""" Configuration file for WAN-VACE video generation application """ import os # Hugging Face token (must be set as environment variable) HF_TOKEN = os.getenv("HF_TOKEN") # Model paths and configurations MODEL_CONFIG = { "transformer_path": "https://huggingface.co/calcuis/wan-gguf/blob/main/wan2.1-v5-vace-1.3b-q4_0.gguf", "text_encoder_path": "chatpig/umt5xxl-encoder-gguf", "text_encoder_file": "umt5xxl-encoder-q4_0.gguf", "vae_path": "callgg/wan-decoder", "pipeline_path": "callgg/wan-decoder" } # Default generation parameters DEFAULT_PARAMS = { "width": 720, "height": 480, "num_frames": 57, "num_inference_steps": 24, "guidance_scale": 2.5, "conditioning_scale": 0.0, "fps": 16, "flow_shift": 3.0 } # UI configuration # # The title and description here emphasise the agentic nature of the app: # you provide a concept and the system plans the prompts for you. Feel free # to adjust these strings to suit your needs or branding. UI_CONFIG = { "title": "🎬 Agentic WAN-VACE Video Generation", "description": ( "Generate high-quality videos from simple concepts. " "Provide a short description of what you want to see, and the agent " "will craft a refined prompt and negative prompt before generating a cinematic " "vertical video using the WAN‑VACE model." ), "theme": "default" } # Server configuration SERVER_CONFIG = { "host": "0.0.0.0", "port": 7860, "share": False }