Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,14 +3,9 @@ from transformers import VideoMAEForVideoClassification, VideoMAEImageProcessor
|
|
| 3 |
from decord import VideoReader, cpu
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
-
# -------------------------------
|
| 7 |
-
# Device
|
| 8 |
-
# -------------------------------
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
# -------------------------------
|
| 12 |
# Load processor and model
|
| 13 |
-
# -------------------------------
|
| 14 |
processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-small-finetuned-ssv2")
|
| 15 |
model = VideoMAEForVideoClassification.from_pretrained(
|
| 16 |
"MCG-NJU/videomae-small-finetuned-ssv2",
|
|
@@ -22,29 +17,15 @@ model.load_state_dict(checkpoint["model_state_dict"])
|
|
| 22 |
model.to(device)
|
| 23 |
model.eval()
|
| 24 |
|
| 25 |
-
# -------------------------------
|
| 26 |
# Class mapping
|
| 27 |
-
# -------------------------------
|
| 28 |
id2class = {
|
| 29 |
-
0: "AFGHANISTAN",
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
4: "DELHI",
|
| 34 |
-
5: "DENMARK",
|
| 35 |
-
6: "ENGLAND",
|
| 36 |
-
7: "GANGTOK",
|
| 37 |
-
8: "GOA",
|
| 38 |
-
9: "GUJARAT",
|
| 39 |
-
10: "HARYANA",
|
| 40 |
-
11: "HIMACHAL_PRADESH",
|
| 41 |
-
12: "JAIPUR",
|
| 42 |
-
13: "JAMMU_AND_KASHMIR"
|
| 43 |
}
|
| 44 |
|
| 45 |
-
# -------------------------------
|
| 46 |
# Video preprocessing
|
| 47 |
-
# -------------------------------
|
| 48 |
def preprocess_video(video_path, processor, num_frames=16):
|
| 49 |
vr = VideoReader(video_path, ctx=cpu(0))
|
| 50 |
total_frames = len(vr)
|
|
@@ -56,11 +37,8 @@ def preprocess_video(video_path, processor, num_frames=16):
|
|
| 56 |
inputs = processor(list(video), return_tensors="pt")
|
| 57 |
return inputs["pixel_values"][0]
|
| 58 |
|
| 59 |
-
# -------------------------------
|
| 60 |
# Prediction function
|
| 61 |
-
# -------------------------------
|
| 62 |
def predict_video(video_file):
|
| 63 |
-
# video_file is a file-like object from Gradio
|
| 64 |
video_path = video_file.name
|
| 65 |
pixel_values = preprocess_video(video_path, processor)
|
| 66 |
pixel_values = pixel_values.unsqueeze(0).to(device)
|
|
@@ -69,16 +47,13 @@ def predict_video(video_file):
|
|
| 69 |
pred_index = torch.argmax(logits, dim=1).item()
|
| 70 |
return id2class[pred_index]
|
| 71 |
|
| 72 |
-
#
|
| 73 |
-
# Gradio Interface
|
| 74 |
-
# -------------------------------
|
| 75 |
iface = gr.Interface(
|
| 76 |
fn=predict_video,
|
| 77 |
-
inputs=gr.Video(
|
| 78 |
outputs="text",
|
| 79 |
title="VideoMAE Classification API",
|
| 80 |
description="Upload a video and get the predicted class."
|
| 81 |
)
|
| 82 |
|
| 83 |
-
|
| 84 |
-
iface.launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
| 3 |
from decord import VideoReader, cpu
|
| 4 |
import gradio as gr
|
| 5 |
|
|
|
|
|
|
|
|
|
|
| 6 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 7 |
|
|
|
|
| 8 |
# Load processor and model
|
|
|
|
| 9 |
processor = VideoMAEImageProcessor.from_pretrained("MCG-NJU/videomae-small-finetuned-ssv2")
|
| 10 |
model = VideoMAEForVideoClassification.from_pretrained(
|
| 11 |
"MCG-NJU/videomae-small-finetuned-ssv2",
|
|
|
|
| 17 |
model.to(device)
|
| 18 |
model.eval()
|
| 19 |
|
|
|
|
| 20 |
# Class mapping
|
|
|
|
| 21 |
id2class = {
|
| 22 |
+
0: "AFGHANISTAN", 1: "AFRICA", 2: "ANDHRA_PRADESH", 3: "ARGENTINA",
|
| 23 |
+
4: "DELHI", 5: "DENMARK", 6: "ENGLAND", 7: "GANGTOK",
|
| 24 |
+
8: "GOA", 9: "GUJARAT", 10: "HARYANA", 11: "HIMACHAL_PRADESH",
|
| 25 |
+
12: "JAIPUR", 13: "JAMMU_AND_KASHMIR"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
}
|
| 27 |
|
|
|
|
| 28 |
# Video preprocessing
|
|
|
|
| 29 |
def preprocess_video(video_path, processor, num_frames=16):
|
| 30 |
vr = VideoReader(video_path, ctx=cpu(0))
|
| 31 |
total_frames = len(vr)
|
|
|
|
| 37 |
inputs = processor(list(video), return_tensors="pt")
|
| 38 |
return inputs["pixel_values"][0]
|
| 39 |
|
|
|
|
| 40 |
# Prediction function
|
|
|
|
| 41 |
def predict_video(video_file):
|
|
|
|
| 42 |
video_path = video_file.name
|
| 43 |
pixel_values = preprocess_video(video_path, processor)
|
| 44 |
pixel_values = pixel_values.unsqueeze(0).to(device)
|
|
|
|
| 47 |
pred_index = torch.argmax(logits, dim=1).item()
|
| 48 |
return id2class[pred_index]
|
| 49 |
|
| 50 |
+
# Gradio interface
|
|
|
|
|
|
|
| 51 |
iface = gr.Interface(
|
| 52 |
fn=predict_video,
|
| 53 |
+
inputs=gr.Video(), # just this
|
| 54 |
outputs="text",
|
| 55 |
title="VideoMAE Classification API",
|
| 56 |
description="Upload a video and get the predicted class."
|
| 57 |
)
|
| 58 |
|
| 59 |
+
iface.launch(share=True)
|
|
|