Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import csv
|
| 3 |
+
import json
|
| 4 |
+
import torch
|
| 5 |
+
import shutil
|
| 6 |
+
import requests
|
| 7 |
+
import textwrap
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from tqdm.auto import tqdm
|
| 12 |
+
from collections import Counter
|
| 13 |
+
from tokenizers import Tokenizer
|
| 14 |
+
import plotly.graph_objects as go
|
| 15 |
+
from huggingface_hub import whoami, HfApi
|
| 16 |
+
from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, pipeline
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
LANGUAGES = {
|
| 20 |
+
"french": {"emoji":"🇫🇷", "nllb_code":"fra_Latn", "hf_code":"fr"},
|
| 21 |
+
"english": {"emoji":"🇬🇧", "nllb_code":"eng_Latn", "hf_code":"en"},
|
| 22 |
+
"german": {"emoji":"🇩🇪", "nllb_code":"deu_Latn", "hf_code":"de"},
|
| 23 |
+
"italian": {"emoji":"🇮🇹", "nllb_code":"ita_Latn", "hf_code":"it"},
|
| 24 |
+
"spanish": {"emoji":"🇪🇸", "nllb_code":"spa_Latn", "hf_code":"es"},
|
| 25 |
+
"portuguese": {"emoji":"🇵🇹", "nllb_code":"por_Latn", "hf_code":"pt"}
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
MODELS = [
|
| 29 |
+
"intfloat/multilingual-e5-small",
|
| 30 |
+
"intfloat/multilingual-e5-base",
|
| 31 |
+
"intfloat/multilingual-e5-large",
|
| 32 |
+
"BAAI/bge-m3",
|
| 33 |
+
"Alibaba-NLP/gte-multilingual-base",
|
| 34 |
+
#"jinaai/jina-embeddings-v3", # TODO: uses ParametrizedEmbedding
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
def estimate_pruned_vocabulary(tokenizer: PreTrainedTokenizerFast, language: str):
|
| 38 |
+
"""
|
| 39 |
+
Estimate the most common tokens in the language. You should first download the 1M sentences dataset for the desired language.
|
| 40 |
+
Source: https://wortschatz.uni-leipzig.de/en/download/English
|
| 41 |
+
"""
|
| 42 |
+
sentences_file = f'data.nosync/{language}_news_2020_1M-sentences.txt'
|
| 43 |
+
if os.path.exists(sentences_file):
|
| 44 |
+
df = pd.read_csv(sentences_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, names=['id', 'text'])
|
| 45 |
+
counter = Counter(tokenizer.all_special_tokens)
|
| 46 |
+
counter.update(tok for t in tqdm(df.text) for tok in tokenizer.tokenize(t))
|
| 47 |
+
with open(f"data.nosync/{language}_filtered_tokens.txt", "w") as f:
|
| 48 |
+
f.write("\n".join(map(str, set(counter))))
|
| 49 |
+
else:
|
| 50 |
+
raise FileNotFoundError
|
| 51 |
+
|
| 52 |
+
def get_pruned_vocabulary(language: str):
|
| 53 |
+
filtered_tokens_file = f"data.nosync/{language}_filtered_tokens.txt"
|
| 54 |
+
if os.path.exists(filtered_tokens_file):
|
| 55 |
+
with open(filtered_tokens_file, "r") as f:
|
| 56 |
+
return set(f.read().splitlines())
|
| 57 |
+
else:
|
| 58 |
+
raise FileNotFoundError(f"No filtered tokens file found for language {language}. Please run `estimate_pruned_vocabulary` first.")
|
| 59 |
+
|
| 60 |
+
@st.cache_resource
|
| 61 |
+
def load_model_and_tokenizer(model_name: str):
|
| 62 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
|
| 64 |
+
return model, tokenizer
|
| 65 |
+
|
| 66 |
+
def count_parameters(model, layer_name: str = None):
|
| 67 |
+
return sum(p.numel() for name, p in model.named_parameters() if layer_name is None or name.startswith(layer_name))
|
| 68 |
+
|
| 69 |
+
@st.cache_resource
|
| 70 |
+
def get_test_sentence(target_lang: str, source_lang: str = "eng_Latn"):
|
| 71 |
+
text = """
|
| 72 |
+
Alan Mathison Turing (23 June 1912 - 7 June 1954) was an English mathematician,
|
| 73 |
+
computer scientist, logician, cryptanalyst, philosopher and theoretical biologist.
|
| 74 |
+
"""
|
| 75 |
+
if target_lang == "eng_Latn":
|
| 76 |
+
return text
|
| 77 |
+
model_name = "facebook/nllb-200-distilled-600M"
|
| 78 |
+
translator = pipeline(task="translation", tokenizer=model_name, model=model_name)
|
| 79 |
+
return translator(text, src_lang=source_lang, tgt_lang=target_lang)[0]['translation_text']
|
| 80 |
+
|
| 81 |
+
def push_to_hub(username: str, token: str, model_dir: str, private: bool = False):
|
| 82 |
+
_ = whoami(token=token)
|
| 83 |
+
api = HfApi(endpoint="https://huggingface.co", token=token)
|
| 84 |
+
repo_id = f"{username}/{model_dir.split('/')[-1]}"
|
| 85 |
+
api.create_repo(repo_id=repo_id, repo_type="model", private=private)
|
| 86 |
+
api.upload_folder(repo_id=repo_id, folder_path=model_dir, commit_message="Upload pruned model")
|
| 87 |
+
|
| 88 |
+
def prune_model(model_name: str, language: str, username: str, token: str):
|
| 89 |
+
st.markdown(f"- Pruning the [**{model_name}**](https://huggingface.co/{model_name}) model to keep its **{language.capitalize()}** tokens only. *Let's go!*")
|
| 90 |
+
|
| 91 |
+
# Load the model and its tokenizer
|
| 92 |
+
model, tokenizer = load_model_and_tokenizer(model_name)
|
| 93 |
+
|
| 94 |
+
# Calculate parameters for the original model
|
| 95 |
+
all_params = count_parameters(model)
|
| 96 |
+
encoder_params = count_parameters(model, layer_name="encoder")
|
| 97 |
+
embedding_params = count_parameters(model, layer_name="embeddings")
|
| 98 |
+
|
| 99 |
+
st.markdown(
|
| 100 |
+
f"- The model has **{all_params/1e6:.1f}M** parameters, of which **{embedding_params/all_params*100:.0f}%** "+
|
| 101 |
+
f"(i.e., {embedding_params/1e6:.1f}M params) come from the *embedding matrix* and its {tokenizer.vocab_size} token entries. "+
|
| 102 |
+
f"This means that the contextualization of text sequences is actually done by a *{model.config.num_hidden_layers}-layer Transformer encoder* "+
|
| 103 |
+
f"with **{encoder_params/1e6:.1f}M** parameters only."
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Estimate the most used tokens in the language.
|
| 107 |
+
filtered_tokens = get_pruned_vocabulary(language)
|
| 108 |
+
st.markdown(
|
| 109 |
+
f"- {language.capitalize()} seems to only use **{len(filtered_tokens)/tokenizer.vocab_size*100:.0f}%** "+
|
| 110 |
+
f"of the model vocabulary (i.e., {len(filtered_tokens)} out of the original {tokenizer.vocab_size} tokens)."
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
st.markdown("- *Updating the tokenizer...*")
|
| 114 |
+
outdir = f"{language}-{model_name.split('/')[-1]}"
|
| 115 |
+
|
| 116 |
+
# Export the tokenizer to a JSON string and access its vocabulary (list of lists: [[token, score], ...])
|
| 117 |
+
tokenizer_json = json.loads(tokenizer.backend_tokenizer.to_str())
|
| 118 |
+
original_vocab = tokenizer_json['model']['vocab']
|
| 119 |
+
|
| 120 |
+
# Build a mapping from tokens to their original IDs
|
| 121 |
+
original_token_to_id = {entry[0]: idx for idx, entry in enumerate(original_vocab)}
|
| 122 |
+
|
| 123 |
+
# Filter out the tokens to remove and reassign new IDs
|
| 124 |
+
new_id = 0
|
| 125 |
+
new_token_to_id = {}
|
| 126 |
+
new_id_to_original_id = {}
|
| 127 |
+
filtered_vocab_entries = []
|
| 128 |
+
|
| 129 |
+
for token, score in original_vocab:
|
| 130 |
+
if token in filtered_tokens:
|
| 131 |
+
filtered_vocab_entries.append([token, score])
|
| 132 |
+
new_token_to_id[token] = new_id
|
| 133 |
+
new_id_to_original_id[new_id] = original_token_to_id[token]
|
| 134 |
+
new_id += 1
|
| 135 |
+
|
| 136 |
+
# Update the vocab in the tokenizer JSON and rebuild the tokenizer from the modified JSON
|
| 137 |
+
tokenizer_json['model']['vocab'] = filtered_vocab_entries
|
| 138 |
+
new_backend_tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
|
| 139 |
+
|
| 140 |
+
# Create a new tokenizer instance and save it
|
| 141 |
+
new_tokenizer = PreTrainedTokenizerFast(tokenizer_object=new_backend_tokenizer, **tokenizer.init_kwargs)
|
| 142 |
+
new_tokenizer.save_pretrained(outdir)
|
| 143 |
+
|
| 144 |
+
st.markdown("- *Updating the embedding matrix...*")
|
| 145 |
+
new_model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 146 |
+
|
| 147 |
+
# Create a new embedding matrix and map the original vectors to their new IDs
|
| 148 |
+
original_embeddings = new_model.get_input_embeddings().weight.data
|
| 149 |
+
new_embeddings = torch.nn.Embedding(
|
| 150 |
+
num_embeddings=new_tokenizer.vocab_size,
|
| 151 |
+
embedding_dim=model.config.hidden_size,
|
| 152 |
+
padding_idx=new_tokenizer.pad_token_id,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
for new_id in range(new_tokenizer.vocab_size):
|
| 156 |
+
original_id = new_id_to_original_id.get(new_id)
|
| 157 |
+
new_embeddings.weight.data[new_id] = original_embeddings[original_id]
|
| 158 |
+
|
| 159 |
+
new_model.set_input_embeddings(new_embeddings)
|
| 160 |
+
new_model.config.vocab_size = new_tokenizer.vocab_size
|
| 161 |
+
new_model.save_pretrained(outdir)
|
| 162 |
+
|
| 163 |
+
# Test the conversion
|
| 164 |
+
test_sentence = get_test_sentence(LANGUAGES[language]['nllb_code'])
|
| 165 |
+
st.markdown(f"""- *Verifying everything worked as expected with the following test sentence: "{test_sentence}"*""")
|
| 166 |
+
|
| 167 |
+
assert len(new_tokenizer) == len(filtered_tokens), f"ERROR: new tokenizer size ({len(new_tokenizer)}) != number of filtered tokens ({len(filtered_tokens)})"
|
| 168 |
+
assert filtered_tokens == set(new_tokenizer.convert_ids_to_tokens(range(len(new_tokenizer)))), f"ERROR: The new tokenizer vocabulary doesn't match number of the filtered tokens"
|
| 169 |
+
|
| 170 |
+
with torch.inference_mode():
|
| 171 |
+
emb1 = model(**tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy()
|
| 172 |
+
emb2 = new_model(**new_tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy()
|
| 173 |
+
diff = np.abs(emb1 - emb2).max()
|
| 174 |
+
assert diff < 1e-6, f"ERROR: Some dimensions of the two vectors have a non negligible difference ({diff})"
|
| 175 |
+
|
| 176 |
+
st.success("The conversion **succeeded**! You can verify it by looking at the output *[cls]* token embedding:")
|
| 177 |
+
col1, col2 = st.columns(2)
|
| 178 |
+
with col1:
|
| 179 |
+
st.markdown("Original model:")
|
| 180 |
+
st.code(f"{emb1.tolist()}")
|
| 181 |
+
with col2:
|
| 182 |
+
st.markdown("Pruned model:")
|
| 183 |
+
st.code(f"{emb2.tolist()}")
|
| 184 |
+
|
| 185 |
+
# Show visually the result of the pruning process
|
| 186 |
+
pruned_all_params = count_parameters(new_model)
|
| 187 |
+
pruned_encoder_params = count_parameters(new_model, layer_name="encoder")
|
| 188 |
+
pruned_embedding_params = count_parameters(new_model, layer_name="embeddings")
|
| 189 |
+
st.markdown(f"The pruned model is **{pruned_all_params/all_params*100:.1f}%** of the original model size.")
|
| 190 |
+
data = {
|
| 191 |
+
'Model': ['Original', 'Pruned'],
|
| 192 |
+
'Embedding': [embedding_params / 1e6, pruned_embedding_params / 1e6],
|
| 193 |
+
'Encoder': [encoder_params / 1e6, pruned_encoder_params / 1e6]
|
| 194 |
+
}
|
| 195 |
+
fig = go.Figure(data=[
|
| 196 |
+
go.Bar(name='Embedding matrix', x=data['Model'], y=data['Embedding'], text=data['Embedding'], textposition='inside', marker_color='#E5B4B4'),
|
| 197 |
+
go.Bar(name='Transformer encoder', x=data['Model'], y=data['Encoder'], text=data['Encoder'], textposition='inside', marker_color='#7FBFE0')
|
| 198 |
+
])
|
| 199 |
+
fig.update_layout(barmode='stack', yaxis_title='# Params (M)', height=400, margin=dict(t=10, b=10))
|
| 200 |
+
fig.update_traces(texttemplate='%{text:.1f}M', textposition='inside', insidetextanchor='middle')
|
| 201 |
+
st.plotly_chart(fig)
|
| 202 |
+
|
| 203 |
+
# Add a README to the pruned model repo
|
| 204 |
+
new_model_name = f"{username}/{outdir.split('/')[-1]}"
|
| 205 |
+
readme_content = textwrap.dedent(f"""
|
| 206 |
+
---
|
| 207 |
+
pipeline_tag: sentence-similarity
|
| 208 |
+
language: {LANGUAGES[language]['hf_code']}
|
| 209 |
+
license: mit
|
| 210 |
+
tags:
|
| 211 |
+
- passage-retrieval
|
| 212 |
+
- sentence-similarity
|
| 213 |
+
- pruned
|
| 214 |
+
library_name: sentence-transformers
|
| 215 |
+
base_model: {model_name}
|
| 216 |
+
base_model_relation: pruned
|
| 217 |
+
---
|
| 218 |
+
# {new_model_name.split('/')[-1]}
|
| 219 |
+
|
| 220 |
+
This model is a pruned version of [{model_name}](https://huggingface.co/{model_name}) for the {language.capitalize()} language.
|
| 221 |
+
|
| 222 |
+
It was created by the [Multilingual Text Embedding Model Pruner](https://huggingface.co/spaces/antoinelouis/mteb-pruner) space,
|
| 223 |
+
which removed tokens not commonly used in {language.capitalize()} from the original multilingual model's vocabulary and adjsuted
|
| 224 |
+
the model's embedding matrix accordingly.
|
| 225 |
+
|
| 226 |
+
This pruned model should perform similarly to the original model for {language.capitalize()} language tasks, but with a much smaller
|
| 227 |
+
memory footprint ({100 - pruned_all_params/all_params*100:.1f}% smaller). However, it may not perform well for other languages present
|
| 228 |
+
in the original multilingual model.
|
| 229 |
+
|
| 230 |
+
## Usage
|
| 231 |
+
|
| 232 |
+
You can use this model with the Transformers library:
|
| 233 |
+
|
| 234 |
+
```python
|
| 235 |
+
from transformers import AutoModel, AutoTokenizer
|
| 236 |
+
|
| 237 |
+
model_name = "{new_model_name}"
|
| 238 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 239 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
|
| 240 |
+
```
|
| 241 |
+
""")
|
| 242 |
+
with open(os.path.join(outdir, "README.md"), "w") as f:
|
| 243 |
+
f.write(readme_content)
|
| 244 |
+
|
| 245 |
+
st.markdown("- *Pushing the pruned model to your Hugging Face account...*")
|
| 246 |
+
push_to_hub(username, token, outdir)
|
| 247 |
+
shutil.rmtree(outdir)
|
| 248 |
+
|
| 249 |
+
st.markdown("Done! You can now load your pruned model like this:")
|
| 250 |
+
st.code(f"""
|
| 251 |
+
from transformers import AutoModel, AutoTokenizer
|
| 252 |
+
|
| 253 |
+
model_name = "{new_model_name}"
|
| 254 |
+
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
|
| 255 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
|
| 256 |
+
""", language="python")
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def main():
|
| 260 |
+
st.header("Multilingual Text Embedding Model Pruner")
|
| 261 |
+
st.markdown("""
|
| 262 |
+
This space helps you create a smaller, language-specific version of a multilingual text embedding model. Here's what it does:
|
| 263 |
+
|
| 264 |
+
1. 🌎 Takes a popular text embedding model that was trained on many languages
|
| 265 |
+
2. ✂️ Trims it down to focus on just one language by removing unused tokens from its vocabulary
|
| 266 |
+
3. 🚀 Gives you a smaller model that works just as well for your chosen language
|
| 267 |
+
|
| 268 |
+
#### Why is this useful?
|
| 269 |
+
|
| 270 |
+
- 💾 Get the same performance in your language with a much smaller model size
|
| 271 |
+
- 🌐 Great for low-resource environments with limited RAM
|
| 272 |
+
|
| 273 |
+
Ready to shrink your model? Let's get started!
|
| 274 |
+
""")
|
| 275 |
+
|
| 276 |
+
model_name = st.selectbox("Choose a multilingual model", MODELS)
|
| 277 |
+
language = st.selectbox(
|
| 278 |
+
"Pick your target language",
|
| 279 |
+
options=list(LANGUAGES.keys()),
|
| 280 |
+
format_func=lambda x: f"{LANGUAGES[x]['emoji']} {x.capitalize()}"
|
| 281 |
+
)
|
| 282 |
+
username = st.text_input("Your Hugging Face username", placeholder="antoinelouis")
|
| 283 |
+
token = st.text_input("Your Hugging Face access token", type="password", placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
|
| 284 |
+
|
| 285 |
+
if st.button("Prune Model"):
|
| 286 |
+
if not username or not token:
|
| 287 |
+
st.error("Your HF username and access token is required to save the pruned model on your account.")
|
| 288 |
+
else:
|
| 289 |
+
prune_model(model_name, language, username, token)
|
| 290 |
+
|
| 291 |
+
st.markdown(
|
| 292 |
+
"""
|
| 293 |
+
<style>
|
| 294 |
+
.credits {
|
| 295 |
+
position: fixed;
|
| 296 |
+
right: 10px;
|
| 297 |
+
bottom: 10px;
|
| 298 |
+
color: #888888;
|
| 299 |
+
font-size: 11px;
|
| 300 |
+
}
|
| 301 |
+
</style>
|
| 302 |
+
<div class="credits">
|
| 303 |
+
Credits to <a href="https://gist.github.com/avidale/44cd35bfcdaf8bedf51d97c468cc8001" target="_blank">@avidale</a> for inspiration.
|
| 304 |
+
</div>
|
| 305 |
+
""",
|
| 306 |
+
unsafe_allow_html=True
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
if __name__ == "__main__":
|
| 310 |
+
main()
|