Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from PIL import Image | |
| from dotenv import load_dotenv | |
| from streamlit_extras.add_vertical_space import add_vertical_space | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings | |
| from langchain.vectorstores import chroma | |
| #from langchain.chains.retrieval_qa.base import RetrievalQA | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain_community.llms import huggingface_hub | |
| from langchain.document_loaders.pdf import PyMuPDFLoader | |
| #from transformers import AutoTokenizer, AutoModelForCausalLM | |
| #from langchain.llms import huggingface_endpoint | |
| import os | |
| #import fitz | |
| #import tempfile | |
| img = Image.open('image/nexio_logo1.png') | |
| st.set_page_config(page_title="PDF Chatbot App",page_icon=img,layout="centered") | |
| with st.sidebar: | |
| st.title('🤖 AI PDF Chatbot 💬') | |
| st.markdown(''' | |
| ## About | |
| This app is an AI chatbot for the PDF files | |
| ''') | |
| add_vertical_space(12) | |
| st.write('Powered by ') | |
| st.image(image='image/nexio_logo2.png',width=150) | |
| # load huggingface API key .env file | |
| load_dotenv() | |
| def main(): | |
| st.header("Chat with PDF 💬") | |
| # upload pdf file | |
| pdf = st.file_uploader("Upload your PDF file",type='pdf') | |
| if pdf is not None: | |
| pdf_reader = PdfReader(pdf) | |
| text = "" | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1000, | |
| chunk_overlap=200, | |
| length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text=text) | |
| #chunks = text_splitter.create_documents(text) | |
| # embeddings | |
| embeddings = HuggingFaceEmbeddings() | |
| vector_store = chroma.Chroma.from_texts(chunks,embeddings) | |
| # Accept user question | |
| query = st.text_input("Ask questions about your PDF file:") | |
| if query: | |
| #PATH = 'model/' | |
| #llm = AutoModelForCausalLM.from_pretrained("CohereForAI/aya-101") | |
| # llm = AutoModelForCausalLM.from_pretrained(PATH,local_files_only=True) | |
| llm = huggingface_hub.HuggingFaceHub(repo_id="CohereForAI/aya-101", | |
| model_kwargs={"temperature":1.0, "max_length":100}) | |
| docs = vector_store.similarity_search(query=query, k=1) | |
| global chain | |
| chain = load_qa_chain(llm=llm, chain_type="stuff") | |
| response = chain.run(input_documents=docs, question=query) | |
| # retriever=vector_store.as_retriever() | |
| # st.write(retriever) | |
| #chain = RetrievalQA.from_chain_type(llm=llm,chain_type="stuff",retriever=retriever) | |
| #response = chain.run(chain) | |
| st.write(response) | |
| if __name__ == '__main__': | |
| main() | |