Spaces:
Sleeping
Sleeping
| import os | |
| from threading import Thread | |
| from typing import Iterator | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import pipeline, AutoTokenizer | |
| MAX_MAX_NEW_TOKENS = 2048 | |
| DEFAULT_MAX_NEW_TOKENS = 1024 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| DESCRIPTION = """\ | |
| # ZhongJing 2 1.8B Merge | |
| This Space demonstrates model [CMLL/ZhongJing-2-1_8b-merge](https://huggingface.co/CMLL/ZhongJing-2-1_8b-merge) for text generation. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints). | |
| """ | |
| LICENSE = """ | |
| <p/> | |
| --- | |
| As a derivative work of [CMLL/ZhongJing-2-1_8b-merge](https://huggingface.co/CMLL/ZhongJing-2-1_8b-merge), | |
| this demo is governed by the original [license](https://huggingface.co/CMLL/ZhongJing-2-1_8b-merge/LICENSE). | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| if torch.cuda.is_available(): | |
| model_id = "CMLL/ZhongJing-2-1_8b-merge" | |
| pipe = pipeline("text-generation", model=model_id) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| tokenizer.use_default_system_prompt = False | |
| def generate( | |
| message: str, | |
| chat_history: list[tuple[str, str]], | |
| system_prompt: str = "You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来.", | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [{"role": "system", "content": system_prompt}] | |
| for user, assistant in chat_history: | |
| conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) | |
| conversation.append({"role": "user", "content": message}) | |
| input_text = "\n".join([f"{entry['role']}: {entry['content']}" for entry in conversation]) | |
| generate_kwargs = { | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "temperature": temperature, | |
| "repetition_penalty": repetition_penalty, | |
| } | |
| # Function to run the generation | |
| def run_generation(): | |
| try: | |
| results = pipe(input_text, **generate_kwargs) | |
| return results | |
| except Exception as e: | |
| return [f"Error in generation: {e}"] | |
| # Run generation in a separate thread and wait for it to finish | |
| outputs = [] | |
| generation_thread = Thread(target=lambda: outputs.extend(run_generation())) | |
| generation_thread.start() | |
| generation_thread.join() | |
| for output in outputs: | |
| yield output['generated_text'] if isinstance(output, dict) else output | |
| chat_interface = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Textbox(label="System prompt", lines=6, value="You are a helpful TCM medical assistant named 仲景中医大语言模型, created by 医哲未来."), | |
| gr.Slider( | |
| label="Max new tokens", | |
| minimum=1, | |
| maximum=MAX_MAX_NEW_TOKENS, | |
| step=1, | |
| value=DEFAULT_MAX_NEW_TOKENS, | |
| ), | |
| gr.Slider( | |
| label="Temperature", | |
| minimum=0.1, | |
| maximum=4.0, | |
| step=0.1, | |
| value=0.6, | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| minimum=0.05, | |
| maximum=1.0, | |
| step=0.05, | |
| value=0.9, | |
| ), | |
| gr.Slider( | |
| label="Top-k", | |
| minimum=1, | |
| maximum=1000, | |
| step=1, | |
| value=50, | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| value=1.2, | |
| ), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Hello there! How are you doing?"], | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["Explain the plot of Cinderella in a sentence."], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| ) | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.Markdown(DESCRIPTION) | |
| gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
| chat_interface.render() | |
| gr.Markdown(LICENSE) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |