Create utils/model.py
Browse files- utils/model.py +28 -0
utils/model.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import pipeline, AutoModelForTimeSeriesPrediction
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 5 |
+
|
| 6 |
+
def predict_umkm(data):
|
| 7 |
+
# Load model TTM
|
| 8 |
+
ttm = AutoModelForTimeSeriesPrediction.from_pretrained(
|
| 9 |
+
"ibm/granite-ttm-r2"
|
| 10 |
+
).to(device)
|
| 11 |
+
|
| 12 |
+
# Prediksi demand
|
| 13 |
+
inputs = {"values": data['demand'].tolist()}
|
| 14 |
+
demand_pred = ttm.generate(**inputs, max_length=7)
|
| 15 |
+
|
| 16 |
+
# Rekomendasi dengan Chronos-T5
|
| 17 |
+
chronos = pipeline(
|
| 18 |
+
"text-generation",
|
| 19 |
+
model="amazon/chronos-t5-small",
|
| 20 |
+
device=device
|
| 21 |
+
)
|
| 22 |
+
prompt = f"""
|
| 23 |
+
Data UMKM:
|
| 24 |
+
- Prediksi demand: {demand_pred}
|
| 25 |
+
- Stok saat ini: {data['supply'].iloc[-1]}
|
| 26 |
+
Beri rekomendasi dalam 1 kalimat:
|
| 27 |
+
"""
|
| 28 |
+
return chronos(prompt, max_length=50)[0]['generated_text']
|