Spaces:
Runtime error
Runtime error
File size: 26,507 Bytes
f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f eda2fac f655f3b f5c517f eda2fac f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b eda2fac f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b f5c517f f655f3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
# app.py
#
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
#
# Version: 2.0.0
#
# Contact:
# Carlos Rodrigues dos Santos
# [email protected]
#
# Related Repositories and Projects:
# GitHub: https://github.com/carlex22/Aduc-sdr
# YouTube (Results): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
#
# PENDING PATENT NOTICE: The ADUC method and system implemented in this
# software is in the process of being patented. Please see NOTICE.md for details.
"""
This file serves as the main entry point for the ADUC-SDR Gradio user interface.
It orchestrates the multi-step workflow for AI-driven film creation, from
pre-production (storyboarding, keyframing) to production (original video rendering)
and post-production (upscaling, HD mastering, audio generation).
The UI is structured using Accordion blocks to guide the user through a logical
sequence of operations, while `gr.State` components manage the flow of data
(file paths of generated artifacts) between these independent steps.
"""
import gradio as gr
import yaml
import logging
import os
import sys
import shutil
import time
import json
from aduc_orchestrator import AducOrchestrator
# --- 1. CONFIGURATION AND INITIALIZATION ---
# This section sets up logging, loads internationalization strings, and initializes
# the core AducOrchestrator which manages all AI specialist models.
LOG_FILE_PATH = "aduc_log.txt"
if os.path.exists(LOG_FILE_PATH):
os.remove(LOG_FILE_PATH)
log_format = '%(asctime)s - %(levelname)s - [%(name)s:%(funcName)s] - %(message)s'
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.handlers.clear()
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(stream_handler)
file_handler = logging.FileHandler(LOG_FILE_PATH, mode='w', encoding='utf-8')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(file_handler)
logger = logging.getLogger(__name__)
# Load translation strings for the UI
i18n = {}
try:
with open("i18n.json", "r", encoding="utf-8") as f:
i18n = json.load(f)
except Exception as e:
logger.error(f"Error loading i18n.json: {e}")
i18n = {"π§π·": {}, "πΊπΈ": {}, "π¨π³": {}}
# Fallback for missing languages
if 'π§π·' not in i18n: i18n['π§π·'] = i18n.get('πΊπΈ', {})
if 'πΊπΈ' not in i18n: i18n['πΊπΈ'] = {}
if 'π¨π³' not in i18n: i18n['π¨π³'] = i18n.get('πΊπΈ', {})
# Initialize the main orchestrator from the configuration file
try:
with open("config.yaml", 'r') as f: config = yaml.safe_load(f)
WORKSPACE_DIR = config['application']['workspace_dir']
aduc = AducOrchestrator(workspace_dir=WORKSPACE_DIR)
logger.info("ADUC Orchestrator and Specialists initialized successfully.")
except Exception as e:
logger.error(f"CRITICAL ERROR during initialization: {e}", exc_info=True)
exit()
# --- 2. UI WRAPPER FUNCTIONS ---
# These functions act as intermediaries between the Gradio UI components and the
# AducOrchestrator. They handle input validation, progress tracking, and updating
# the UI state after each operation.
def run_pre_production_wrapper(prompt, num_keyframes, ref_files, resolution_str, duration_per_fragment, progress=gr.Progress()):
"""
Wrapper for Pre-Production (Steps 1 & 2): Generates storyboard and keyframes.
This corresponds to the "Art Director Mode".
"""
if not ref_files:
raise gr.Error("Please provide at least one reference image.")
ref_paths = [aduc.process_image_for_story(f.name, 480, f"ref_processed_{i}.png") for i, f in enumerate(ref_files)]
progress(0.1, desc="Generating storyboard...")
storyboard, initial_ref_path, _ = aduc.task_generate_storyboard(prompt, num_keyframes, ref_paths, progress)
resolution = int(resolution_str.split('x')[0])
# Callback factory to create progress updates for keyframe generation
def cb_factory(scene_index, total_scenes):
start_time = time.time()
total_steps = 12 # Standard steps for Flux model
def callback(pipe_self, step, timestep, callback_kwargs):
elapsed = time.time() - start_time
current_step = step + 1
if current_step > 0:
it_per_sec = current_step / elapsed
eta = (total_steps - current_step) / it_per_sec if it_per_sec > 0 else 0
desc = f"Keyframe {scene_index}/{total_scenes}: {int((current_step/total_steps)*100)}% | {current_step}/{total_steps} [{elapsed:.0f}s<{eta:.0f}s, {it_per_sec:.2f}it/s]"
base_progress = 0.2 + (scene_index - 1) * (0.8 / total_scenes)
step_progress = (current_step / total_steps) * (0.8 / total_scenes)
progress(base_progress + step_progress, desc=desc)
return {}
return callback
final_keyframes = aduc.task_generate_keyframes(storyboard, initial_ref_path, prompt, resolution, cb_factory)
# Make the next step (Production) visible
return gr.update(value=storyboard), gr.update(value=final_keyframes), gr.update(visible=True, open=True)
def run_pre_production_photo_wrapper(prompt, num_keyframes, ref_files, progress=gr.Progress()):
"""
Wrapper for Pre-Production (Steps 1 & 2) in "Photographer Mode".
Generates a storyboard and selects the best matching keyframes from a user-provided pool.
"""
if not ref_files or len(ref_files) < 2:
raise gr.Error("Photographer Mode requires at least 2 images: one base and one for the scene pool.")
base_ref_paths = [aduc.process_image_for_story(ref_files[0].name, 480, "base_ref_processed_0.png")]
pool_ref_paths = [aduc.process_image_for_story(f.name, 480, f"pool_ref_{i+1}.png") for i, f in enumerate(ref_files[1:])]
progress(0.1, desc="Generating storyboard...")
storyboard, _, _ = aduc.task_generate_storyboard(prompt, num_keyframes, base_ref_paths, progress)
progress(0.5, desc="AI Photographer is selecting the best scenes...")
selected_keyframes = aduc.task_select_keyframes(storyboard, base_ref_paths, pool_ref_paths)
return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True)
def run_original_production_wrapper(keyframes, prompt, duration,
trim_percent, handler_strength, destination_convergence_strength,
guidance_scale, stg_scale, inference_steps,
video_resolution,
progress=gr.Progress()):
"""
Wrapper for Step 3: Production. Generates the original master video using LTX.
Yields UI updates to show progress and final output.
"""
yield {
original_video_output: gr.update(value=None, visible=True, label="π¬ Producing your original master video... Please wait."),
final_video_output: gr.update(value=None, visible=True, label="π¬ Production in progress..."),
step4_accordion: gr.update(visible=False) # Hide post-production until this is done
}
resolution = int(video_resolution.split('x')[0])
# The orchestrator now returns the paths to the generated artifacts
result = aduc.task_produce_original_movie(
keyframes, prompt, duration,
int(trim_percent), handler_strength, destination_convergence_strength,
guidance_scale, stg_scale, int(inference_steps),
resolution, use_continuity_director=True, progress=progress
)
original_latents = result["latent_paths"]
original_video = result["final_path"]
yield {
original_video_output: gr.update(value=original_video, label="β
Original Master Video"),
final_video_output: gr.update(value=original_video, label="Final Film (Result of the Last Step)"),
step4_accordion: gr.update(visible=True, open=True), # Show post-production tools
# Update state for the next steps
original_latents_paths_state: original_latents,
original_video_path_state: original_video,
current_source_video_state: original_video,
}
def run_upscaler_wrapper(latent_paths, chunk_size, progress=gr.Progress()):
"""
Wrapper for Post-Production Step 4A: Latent Upscaler.
"""
if not latent_paths:
raise gr.Error("Cannot run Upscaler. No original latents found. Please complete Step 3 first.")
yield {
upscaler_video_output: gr.update(value=None, visible=True, label="Upscaling latents and decoding video..."),
final_video_output: gr.update(label="Post-Production in progress: Latent Upscaling...")
}
upscaled_video_path = aduc.task_run_latent_upscaler(
latent_paths, int(chunk_size), progress=progress
)
yield {
upscaler_video_output: gr.update(value=upscaled_video_path, label="β
Latent Upscale Complete"),
final_video_output: gr.update(value=upscaled_video_path),
# Update states for subsequent steps
upscaled_video_path_state: upscaled_video_path,
current_source_video_state: upscaled_video_path,
}
def run_hd_wrapper(source_video, model_version, steps, progress=gr.Progress()):
"""
Wrapper for Post-Production Step 4B: HD Mastering.
"""
if not source_video:
raise gr.Error("Cannot run HD Mastering. No source video found. Please complete a previous step first.")
yield {
hd_video_output: gr.update(value=None, visible=True, label="Applying HD mastering... This may take a while."),
final_video_output: gr.update(label="Post-Production in progress: HD Mastering...")
}
hd_video_path = aduc.task_run_hd_mastering(
source_video, model_version, int(steps), progress=progress
)
yield {
hd_video_output: gr.update(value=hd_video_path, label="β
HD Mastering Complete"),
final_video_output: gr.update(value=hd_video_path),
hd_video_path_state: hd_video_path,
current_source_video_state: hd_video_path,
}
def run_audio_wrapper(source_video, audio_prompt, global_prompt, progress=gr.Progress()):
"""
Wrapper for Post-Production Step 4C: Audio Generation.
"""
if not source_video:
raise gr.Error("Cannot run Audio Generation. No source video found. Please complete a previous step first.")
yield {
audio_video_output: gr.update(value=None, visible=True, label="Generating audio and muxing..."),
final_video_output: gr.update(label="Post-Production in progress: Audio Generation...")
}
# Use the specific audio prompt if provided, otherwise fall back to the global prompt
final_audio_prompt = audio_prompt if audio_prompt and audio_prompt.strip() else global_prompt
video_with_audio_path = aduc.task_run_audio_generation(
source_video, final_audio_prompt, progress=progress
)
yield {
audio_video_output: gr.update(value=video_with_audio_path, label="β
Audio Generation Complete"),
final_video_output: gr.update(value=video_with_audio_path),
}
def get_log_content():
"""
Reads and returns the content of the log file for display in the UI.
"""
try:
with open(LOG_FILE_PATH, "r", encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
return "Log file not yet created. Start a generation."
def update_ui_language(lang_code):
"""
Updates all text components in the UI to the selected language.
It fetches the translation map from the `i18n` dictionary.
"""
lang_map = i18n.get(lang_code, i18n.get('en', {}))
# This dictionary maps each UI component variable to its new value from the language map.
return {
# General
title_md: gr.update(value=f"# {lang_map.get('app_title')}"),
subtitle_md: gr.update(value=lang_map.get('app_subtitle')),
lang_selector: gr.update(label=lang_map.get('lang_selector_label')),
# Step 1: Pre-Production
step1_accordion: gr.update(label=lang_map.get('step1_accordion')),
prompt_input: gr.update(label=lang_map.get('prompt_label')),
ref_image_input: gr.update(label=lang_map.get('ref_images_label')),
num_keyframes_slider: gr.update(label=lang_map.get('keyframes_label')),
duration_per_fragment_slider: gr.update(label=lang_map.get('duration_label'), info=lang_map.get('duration_info')),
storyboard_and_keyframes_button: gr.update(value=lang_map.get('storyboard_and_keyframes_button')),
storyboard_from_photos_button: gr.update(value=lang_map.get('storyboard_from_photos_button')),
step1_mode_b_info_md: gr.update(value=f"*{lang_map.get('step1_mode_b_info')}*"),
storyboard_output: gr.update(label=lang_map.get('storyboard_output_label')),
keyframe_gallery: gr.update(label=lang_map.get('keyframes_gallery_label')),
# Step 3: Production
step3_accordion: gr.update(label=lang_map.get('step3_accordion')),
step3_description_md: gr.update(value=lang_map.get('step3_description')),
produce_original_button: gr.update(value=lang_map.get('produce_original_button')),
causality_accordion: gr.update(label=lang_map.get('causality_controls_title')),
trim_percent_slider: gr.update(label=lang_map.get('trim_percent_label'), info=lang_map.get('trim_percent_info')),
forca_guia_slider: gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')),
convergencia_destino_slider: gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')),
ltx_pipeline_accordion: gr.update(label=lang_map.get('ltx_pipeline_options')),
guidance_scale_slider: gr.update(label=lang_map.get('guidance_scale_label'), info=lang_map.get('guidance_scale_info')),
stg_scale_slider: gr.update(label=lang_map.get('stg_scale_label'), info=lang_map.get('stg_scale_info')),
inference_steps_slider: gr.update(label=lang_map.get('steps_label'), info=lang_map.get('steps_info')),
# Step 4: Post-Production
step4_accordion: gr.update(label=lang_map.get('step4_accordion')),
step4_description_md: gr.update(value=lang_map.get('step4_description')),
sub_step_a_accordion: gr.update(label=lang_map.get('sub_step_a_upscaler')),
upscaler_description_md: gr.update(value=lang_map.get('upscaler_description')),
upscaler_options_accordion: gr.update(label=lang_map.get('upscaler_options')),
upscaler_chunk_size_slider: gr.update(label=lang_map.get('upscaler_chunk_size_label'), info=lang_map.get('upscaler_chunk_size_info')),
run_upscaler_button: gr.update(value=lang_map.get('run_upscaler_button')),
sub_step_b_accordion: gr.update(label=lang_map.get('sub_step_b_hd')),
hd_description_md: gr.update(value=lang_map.get('hd_description')),
hd_options_accordion: gr.update(label=lang_map.get('hd_options')),
hd_model_radio: gr.update(label=lang_map.get('hd_model_label')),
hd_steps_slider: gr.update(label=lang_map.get('hd_steps_label'), info=lang_map.get('hd_steps_info')),
run_hd_button: gr.update(value=lang_map.get('run_hd_button')),
sub_step_c_accordion: gr.update(label=lang_map.get('sub_step_c_audio')),
audio_description_md: gr.update(value=lang_map.get('audio_description')),
audio_options_accordion: gr.update(label=lang_map.get('audio_options')),
audio_prompt_input: gr.update(label=lang_map.get('audio_prompt_label'), info=lang_map.get('audio_prompt_info')),
run_audio_button: gr.update(value=lang_map.get('run_audio_button')),
# Final Outputs & Logs
final_video_output: gr.update(label=lang_map.get('final_video_label')),
log_accordion: gr.update(label=lang_map.get('log_accordion_label')),
log_display: gr.update(label=lang_map.get('log_display_label')),
update_log_button: gr.update(value=lang_map.get('update_log_button')),
}
# --- 3. GRADIO UI DEFINITION ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Initialize UI with default language (Portuguese)
default_lang = i18n.get('pt', {})
# State components to manage the pipeline artifacts
original_latents_paths_state = gr.State(value=None)
original_video_path_state = gr.State(value=None)
upscaled_video_path_state = gr.State(value=None)
hd_video_path_state = gr.State(value=None)
current_source_video_state = gr.State(value=None) # Tracks the latest video for post-production steps
# --- UI Header ---
title_md = gr.Markdown(f"# {default_lang.get('app_title')}")
subtitle_md = gr.Markdown(default_lang.get('app_subtitle'))
with gr.Row():
lang_selector = gr.Radio(["π§π·", "πΊπΈ", "π¨π³"], value="pt", label=default_lang.get('lang_selector_label'))
resolution_selector = gr.Radio(["480x480", "720x720", "960x960"], value="480x480", label="Base Resolution")
# --- Step 1 & 2: Pre-Production ---
with gr.Accordion(default_lang.get('step1_accordion'), open=True) as step1_accordion:
prompt_input = gr.Textbox(label=default_lang.get('prompt_label'), value="A majestic lion walks across the savanna, sits down, and then roars at the setting sun.")
ref_image_input = gr.File(label=default_lang.get('ref_images_label'), file_count="multiple", file_types=["image"])
with gr.Row():
num_keyframes_slider = gr.Slider(minimum=3, maximum=42, value=5, step=1, label=default_lang.get('keyframes_label'))
duration_per_fragment_slider = gr.Slider(label=default_lang.get('duration_label'), info=default_lang.get('duration_info'), minimum=2.0, maximum=10.0, value=4.0, step=0.1)
with gr.Row():
storyboard_and_keyframes_button = gr.Button(default_lang.get('storyboard_and_keyframes_button'), variant="primary")
storyboard_from_photos_button = gr.Button(default_lang.get('storyboard_from_photos_button'))
step1_mode_b_info_md = gr.Markdown(f"*{default_lang.get('step1_mode_b_info')}*")
storyboard_output = gr.JSON(label=default_lang.get('storyboard_output_label'))
keyframe_gallery = gr.Gallery(label=default_lang.get('keyframes_gallery_label'), visible=True, object_fit="contain", height="auto", type="filepath")
# --- Step 3: Production ---
with gr.Accordion(default_lang.get('step3_accordion'), open=False, visible=False) as step3_accordion:
step3_description_md = gr.Markdown(default_lang.get('step3_description'))
with gr.Accordion(default_lang.get('ltx_advanced_options'), open=False) as ltx_advanced_options_accordion:
with gr.Accordion(default_lang.get('causality_controls_title'), open=True) as causality_accordion:
trim_percent_slider = gr.Slider(minimum=10, maximum=90, value=50, step=5, label=default_lang.get('trim_percent_label'), info=default_lang.get('trim_percent_info'))
with gr.Row():
forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info'))
convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info'))
with gr.Accordion(default_lang.get('ltx_pipeline_options'), open=True) as ltx_pipeline_accordion:
with gr.Row():
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=10.0, value=2.0, step=0.1, label=default_lang.get('guidance_scale_label'), info=default_lang.get('guidance_scale_info'))
stg_scale_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.025, step=0.005, label=default_lang.get('stg_scale_label'), info=default_lang.get('stg_scale_info'))
inference_steps_slider = gr.Slider(minimum=10, maximum=50, value=20, step=1, label=default_lang.get('steps_label'), info=default_lang.get('steps_info'))
produce_original_button = gr.Button(default_lang.get('produce_original_button'), variant="primary")
original_video_output = gr.Video(label="Original Master Video", visible=False)
# --- Step 4: Post-Production ---
with gr.Accordion(default_lang.get('step4_accordion'), open=False, visible=False) as step4_accordion:
step4_description_md = gr.Markdown(default_lang.get('step4_description'))
# Sub-Step 4A: Latent Upscaler
with gr.Accordion(default_lang.get('sub_step_a_upscaler'), open=True) as sub_step_a_accordion:
upscaler_description_md = gr.Markdown(default_lang.get('upscaler_description'))
with gr.Accordion(default_lang.get('upscaler_options'), open=False) as upscaler_options_accordion:
upscaler_chunk_size_slider = gr.Slider(minimum=1, maximum=10, value=4, step=1, label=default_lang.get('upscaler_chunk_size_label'), info=default_lang.get('upscaler_chunk_size_info'))
run_upscaler_button = gr.Button(default_lang.get('run_upscaler_button'), variant="secondary")
upscaler_video_output = gr.Video(label="Upscaled Video", visible=False)
# Sub-Step 4B: HD Mastering
with gr.Accordion(default_lang.get('sub_step_b_hd'), open=True) as sub_step_b_accordion:
hd_description_md = gr.Markdown(default_lang.get('hd_description'))
with gr.Accordion(default_lang.get('hd_options'), open=False) as hd_options_accordion:
hd_model_radio = gr.Radio(["3B", "7B"], value="3B", label=default_lang.get('hd_model_label'))
hd_steps_slider = gr.Slider(minimum=20, maximum=150, value=50, step=5, label=default_lang.get('hd_steps_label'), info=default_lang.get('hd_steps_info'))
run_hd_button = gr.Button(default_lang.get('run_hd_button'), variant="secondary")
hd_video_output = gr.Video(label="HD Mastered Video", visible=False)
# Sub-Step 4C: Audio Generation
with gr.Accordion(default_lang.get('sub_step_c_audio'), open=True) as sub_step_c_accordion:
audio_description_md = gr.Markdown(default_lang.get('audio_description'))
with gr.Accordion(default_lang.get('audio_options'), open=False) as audio_options_accordion:
audio_prompt_input = gr.Textbox(label=default_lang.get('audio_prompt_label'), info=default_lang.get('audio_prompt_info'), lines=3)
run_audio_button = gr.Button(default_lang.get('run_audio_button'), variant="secondary")
audio_video_output = gr.Video(label="Video with Audio", visible=False)
# --- Final Output & Logs ---
final_video_output = gr.Video(label=default_lang.get('final_video_label'), visible=False)
with gr.Accordion(default_lang.get('log_accordion_label'), open=False) as log_accordion:
log_display = gr.Textbox(label=default_lang.get('log_display_label'), lines=20, interactive=False, autoscroll=True)
update_log_button = gr.Button(default_lang.get('update_log_button'))
# --- 4. UI EVENT CONNECTIONS ---
# Collect all UI components that need language updates
all_ui_components = list(update_ui_language('pt').keys())
lang_selector.change(fn=update_ui_language, inputs=lang_selector, outputs=all_ui_components)
# Pre-Production Button Clicks
storyboard_and_keyframes_button.click(
fn=run_pre_production_wrapper,
inputs=[prompt_input, num_keyframes_slider, ref_image_input, resolution_selector, duration_per_fragment_slider],
outputs=[storyboard_output, keyframe_gallery, step3_accordion]
)
storyboard_from_photos_button.click(
fn=run_pre_production_photo_wrapper,
inputs=[prompt_input, num_keyframes_slider, ref_image_input],
outputs=[storyboard_output, keyframe_gallery, step3_accordion]
)
# Production Button Click
produce_original_button.click(
fn=run_original_production_wrapper,
inputs=[
keyframe_gallery, prompt_input, duration_per_fragment_slider,
trim_percent_slider, forca_guia_slider, convergencia_destino_slider,
guidance_scale_slider, stg_scale_slider, inference_steps_slider,
resolution_selector
],
outputs=[
original_video_output, final_video_output, step4_accordion,
original_latents_paths_state, original_video_path_state, current_source_video_state
]
)
# Post-Production Button Clicks
run_upscaler_button.click(
fn=run_upscaler_wrapper,
inputs=[original_latents_paths_state, upscaler_chunk_size_slider],
outputs=[
upscaler_video_output, final_video_output,
upscaled_video_path_state, current_source_video_state
]
)
run_hd_button.click(
fn=run_hd_wrapper,
inputs=[current_source_video_state, hd_model_radio, hd_steps_slider],
outputs=[
hd_video_output, final_video_output,
hd_video_path_state, current_source_video_state
]
)
run_audio_button.click(
fn=run_audio_wrapper,
inputs=[current_source_video_state, audio_prompt_input, prompt_input],
outputs=[audio_video_output, final_video_output]
)
# Log Button Click
update_log_button.click(fn=get_log_content, inputs=[], outputs=[log_display])
# --- 5. APPLICATION LAUNCH ---
if __name__ == "__main__":
if os.path.exists(WORKSPACE_DIR):
logger.info(f"Clearing previous workspace at: {WORKSPACE_DIR}")
shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR)
logger.info(f"Application started. Launching Gradio interface...")
demo.queue().launch() |