Spaces:
Runtime error
Runtime error
File size: 12,857 Bytes
501fd32 aabed75 501fd32 51363f0 99c6a62 501fd32 aabed75 ffc9fa5 aabed75 ffc9fa5 d4ae81a ffc9fa5 51363f0 ffc9fa5 51363f0 ffc9fa5 aabed75 ffc9fa5 33ed0b3 aabed75 501fd32 33ed0b3 a871b6c 33ed0b3 501fd32 ffc9fa5 659e451 ffc9fa5 d4ae81a ffc9fa5 d4ae81a ffc9fa5 d4ae81a 501fd32 33ed0b3 501fd32 33ed0b3 501fd32 99c6a62 33ed0b3 99c6a62 ffc9fa5 aabed75 ffc9fa5 51363f0 ffc9fa5 51363f0 ffc9fa5 501fd32 33ed0b3 51363f0 ffc9fa5 1dbc870 ffc9fa5 501fd32 99c6a62 501fd32 aabed75 33ed0b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# app.py
#
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
#
# Versão 6.0.0 (Clean, Interactive & Consolidated UI) - Final
import gradio as gr
import yaml
import logging
import os
import sys
import shutil
import time
import json
# --- 1. IMPORTAÇÃO DO FRAMEWORK E CONFIGURAÇÃO ---
import aduc_framework
from aduc_framework.types import PreProductionParams, ProductionParams
# Configuração de Tema Cinemático
cinematic_theme = gr.themes.Base(
primary_hue=gr.themes.colors.indigo,
secondary_hue=gr.themes.colors.purple,
neutral_hue=gr.themes.colors.slate,
font=(gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"),
).set(
body_background_fill="#111827", body_text_color="#E5E7EB",
button_primary_background_fill="linear-gradient(90deg, #4F46E5, #8B5CF6)",
button_primary_text_color="#FFFFFF", button_secondary_background_fill="#374151",
button_secondary_border_color="#4B5563", button_secondary_text_color="#E5E7EB",
block_background_fill="#1F2937", block_border_width="1px", block_border_color="#374151",
block_label_background_fill="#374151", block_label_text_color="#E5E7EB",
block_title_text_color="#FFFFFF", input_background_fill="#374151",
input_border_color="#4B5563", input_placeholder_color="#9CA3AF",
)
# Configuração de Logging
LOG_FILE_PATH = "aduc_log.txt"
if os.path.exists(LOG_FILE_PATH): os.remove(LOG_FILE_PATH)
log_format = '%(asctime)s - %(levelname)s - [%(name)s:%(funcName)s] - %(message)s'
root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.handlers.clear()
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(stream_handler)
file_handler = logging.FileHandler(LOG_FILE_PATH, mode='w', encoding='utf-8')
file_handler.setFormatter(logging.Formatter(log_format))
root_logger.addHandler(file_handler)
logger = logging.getLogger(__name__)
# Inicialização do Aduc Framework
try:
with open("config.yaml", 'r') as f: config = yaml.safe_load(f)
WORKSPACE_DIR = config['application']['workspace_dir']
aduc = aduc_framework.create_aduc_instance(workspace_dir=WORKSPACE_DIR)
logger.info("Interface Gradio inicializada e conectada ao Aduc Framework.")
except Exception as e:
logger.critical(f"ERRO CRÍTICO durante a inicialização: {e}", exc_info=True)
with gr.Blocks() as demo:
gr.Markdown("# ERRO CRÍTICO NA INICIALIZAÇÃO")
gr.Markdown("Não foi possível iniciar o Aduc Framework. Verifique os logs para mais detalhes.")
gr.Textbox(value=str(e), label="Detalhes do Erro", lines=10)
demo.launch()
exit()
# --- 2. FUNÇÕES WRAPPER (UI <-> FRAMEWORK) ---
def run_pre_production_wrapper(prompt, num_keyframes, ref_files, resolution_str, duration_per_fragment, progress=gr.Progress()):
if not ref_files: raise gr.Error("Por favor, forneça pelo menos uma imagem de referência.")
target_resolution = int(resolution_str.split('x')[0])
ref_paths = [aduc.process_image_for_story(f.name, target_resolution, f"ref_processed_{i}.png") for i, f in enumerate(ref_files)]
params = PreProductionParams(prompt=prompt, num_keyframes=int(num_keyframes), ref_paths=ref_paths, resolution=target_resolution, duration_per_fragment=duration_per_fragment)
final_result = {}
for update in aduc.task_pre_production(params, progress):
yield {
generation_state_holder: update.get("updated_state", gr.skip()),
storyboard_output: update.get("storyboard", gr.skip()),
keyframe_gallery: gr.update(value=update.get("final_keyframes", [])),
}
final_result = update
yield {
generation_state_holder: final_result.get("updated_state"),
step3_accordion: gr.update(visible=True, open=True)
}
def run_original_production_wrapper(current_state_dict, trim_percent, handler_strength, dest_strength, guidance_scale, stg_scale, steps, progress=gr.Progress()):
yield {final_video_output: gr.update(value=None, visible=True, label="🎬 Produzindo seu filme...")}
production_params = ProductionParams(trim_percent=int(trim_percent), handler_strength=handler_strength, destination_convergence_strength=dest_strength, guidance_scale=guidance_scale, stg_scale=stg_scale, inference_steps=int(steps))
final_video_path, latent_paths, updated_state = aduc.task_produce_original_movie(params=production_params, progress_callback=progress)
yield {
final_video_output: gr.update(value=final_video_path, label="✅ Filme Original Master"),
step4_accordion: gr.update(visible=True, open=True),
original_latents_paths_state: latent_paths,
current_source_video_state: final_video_path,
generation_state_holder: updated_state.model_dump(),
}
def run_upscaler_wrapper(source_video, latent_paths, chunk_size, progress=gr.Progress()):
if not source_video or not latent_paths: raise gr.Error("Fonte de vídeo ou latentes originais não encontrados para o Upscaler.")
yield {final_video_output: gr.update(label="Pós-Produção: Upscaler Latente...")}
final_path = source_video
for update in aduc.task_run_latent_upscaler(latent_paths, int(chunk_size), progress):
if "final_path" in update: final_path = update['final_path']
yield {final_video_output: gr.update(value=final_path, label="✅ Upscale Latente Concluído"), current_source_video_state: final_path}
def run_hd_wrapper(source_video, steps, global_prompt, progress=gr.Progress()):
if not source_video: raise gr.Error("Fonte de vídeo não encontrada para a Masterização HD.")
yield {final_video_output: gr.update(label="Pós-Produção: Masterização HD...")}
final_path = source_video
for update in aduc.task_run_hd_mastering(source_video, int(steps), global_prompt, progress):
if "final_path" in update: final_path = update['final_path']
yield {final_video_output: gr.update(value=final_path, label="✅ Masterização HD Concluída"), current_source_video_state: final_path}
def run_audio_wrapper(source_video, audio_prompt, global_prompt, progress=gr.Progress()):
if not source_video: raise gr.Error("Fonte de vídeo não encontrada para a Geração de Áudio.")
yield {final_video_output: gr.update(label="Pós-Produção: Geração de Áudio...")}
final_audio_prompt = audio_prompt if audio_prompt and audio_prompt.strip() else global_prompt
final_path = source_video
for update in aduc.task_run_audio_generation(source_video, final_audio_prompt, progress):
if "final_path" in update: final_path = update['final_path']
yield {final_video_output: gr.update(value=final_path, label="✅ Filme Final com Áudio")}
def get_log_content():
try:
with open(LOG_FILE_PATH, "r", encoding="utf-8") as f: return f.read()
except FileNotFoundError: return "Arquivo de log ainda não criado."
# --- 3. DEFINIÇÃO DA UI ---
with gr.Blocks(theme=cinematic_theme, css="style.css") as demo:
generation_state_holder = gr.State(value={})
original_latents_paths_state = gr.State(value=[])
current_source_video_state = gr.State(value=None)
gr.Markdown("<h1>ADUC-SDR 🎬 - O Diretor de Cinema IA</h1>")
gr.Markdown("<p>Crie um filme completo com vídeo e áudio, orquestrado por uma equipe de IAs especialistas.</p>")
with gr.Accordion("Etapa 1: Roteiro e Cenas-Chave (Pré-Produção)", open=True) as step1_accordion:
prompt_input = gr.Textbox(label="Ideia Geral do Filme", value="Um leão majestoso caminha pela savana, senta-se e ruge para o sol poente.")
with gr.Row():
lang_selector = gr.Radio(["🇧🇷", "🇺🇸", "🇨🇳"], value="🇧🇷", label="Idioma / Language")
resolution_selector = gr.Radio(["512x512", "768x768", "1024x1024"], value="512x512", label="Resolução Base")
ref_image_input = gr.File(label="Grupo de Imagens do Usuário", file_count="multiple", file_types=["image"], type="filepath")
with gr.Row():
num_keyframes_slider = gr.Slider(minimum=2, maximum=42, value=4, step=2, label="Número de Cenas-Chave (Par)")
duration_per_fragment_slider = gr.Slider(label="Duração de cada Clipe (s)", minimum=2.0, maximum=10.0, value=4.0, step=0.1)
storyboard_and_keyframes_button = gr.Button("Gerar Roteiro e Keyframes", variant="primary")
with gr.Accordion("Etapa 2: Produção do Vídeo Original", open=False, visible=False) as step3_accordion:
trim_percent_slider = gr.Slider(minimum=10, maximum=90, value=50, step=5, label="Poda Causal (%)")
handler_strength = gr.Slider(label="Força do Déjà-Vu", minimum=0.0, maximum=1.0, value=0.5, step=0.05)
dest_strength = gr.Slider(label="Força da Âncora Final", minimum=0.0, maximum=1.0, value=0.75, step=0.05)
guidance_scale_slider = gr.Slider(minimum=1.0, maximum=10.0, value=2.0, step=0.1, label="Escala de Orientação")
stg_scale_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.025, step=0.005, label="Escala STG")
inference_steps_slider = gr.Slider(minimum=10, maximum=50, value=20, step=1, label="Passos de Inferência")
produce_original_button = gr.Button("🎬 Produzir Vídeo Original", variant="primary")
with gr.Accordion("Etapa 3: Pós-Produção (Opcional)", open=False, visible=False) as step4_accordion:
gr.Markdown("Aplique melhorias ao filme. Cada etapa usa o resultado da anterior como fonte.")
with gr.Accordion("A. Upscaler Latente 2x", open=True):
upscaler_chunk_size_slider = gr.Slider(minimum=1, maximum=10, value=2, step=1, label="Fragmentos por Lote")
run_upscaler_button = gr.Button("Executar Upscaler Latente", variant="secondary")
with gr.Accordion("B. Masterização HD (SeedVR)", open=True):
hd_steps_slider = gr.Slider(minimum=20, maximum=150, value=100, step=5, label="Passos de Inferência HD")
run_hd_button = gr.Button("Executar Masterização HD", variant="secondary")
with gr.Accordion("C. Geração de Áudio", open=True):
audio_prompt_input = gr.Textbox(label="Prompt de Áudio Detalhado (Opcional)", lines=2, placeholder="Descreva os sons, efeitos e música.")
run_audio_button = gr.Button("Gerar Áudio", variant="secondary")
final_video_output = gr.Video(label="Filme Final (Resultado da Última Etapa)", visible=False, interactive=False)
with gr.Accordion("Grupo das Keyframes", open=False) as keyframes_accordion:
keyframe_gallery = gr.Gallery(label="Keyframes Gerados", visible=True, object_fit="contain", height="auto", type="filepath")
with gr.Accordion("🧬 DNA Digital da Geração (JSON)", open=False) as data_accordion:
storyboard_output = gr.JSON(label="Roteiro Gerado (Storyboard)")
generation_data_output = gr.JSON(label="Estado de Geração Completo")
with gr.Accordion("📝 Log de Geração (Detalhado)", open=False) as log_accordion:
log_display = gr.Textbox(label="Log da Sessão", lines=20, interactive=False, autoscroll=True)
update_log_button = gr.Button("Atualizar Log")
# --- 4. CONEXÕES DE EVENTOS ---
storyboard_and_keyframes_button.click(fn=run_pre_production_wrapper, inputs=[prompt_input, num_keyframes_slider, ref_image_input, resolution_selector, duration_per_fragment_slider], outputs=[generation_state_holder, storyboard_output, keyframe_gallery, step3_accordion])
produce_original_button.click(fn=run_original_production_wrapper, inputs=[generation_state_holder, trim_percent_slider, handler_strength, dest_strength, guidance_scale_slider, stg_scale_slider, inference_steps_slider], outputs=[final_video_output, step4_accordion, original_latents_paths_state, current_source_video_state, generation_state_holder])
run_upscaler_button.click(fn=run_upscaler_wrapper, inputs=[current_source_video_state, original_latents_paths_state, upscaler_chunk_size_slider], outputs=[final_video_output, current_source_video_state])
run_hd_button.click(fn=run_hd_wrapper, inputs=[current_source_video_state, hd_steps_slider, prompt_input], outputs=[final_video_output, current_source_video_state])
run_audio_button.click(fn=run_audio_wrapper, inputs=[current_source_video_state, audio_prompt_input, prompt_input], outputs=[final_video_output])
generation_state_holder.change(fn=lambda state: state, inputs=generation_state_holder, outputs=generation_data_output)
update_log_button.click(fn=get_log_content, inputs=[], outputs=[log_display])
# --- 5. INICIALIZAÇÃO DA APLICAÇÃO ---
if __name__ == "__main__":
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
os.makedirs(WORKSPACE_DIR)
logger.info("Aplicação Gradio iniciada. Lançando interface...")
demo.queue().launch() |