Aduc-sdr-cinematic-video / managers /seedvr_manager.py
Aduc-sdr's picture
Update managers/seedvr_manager.py
3772b14 verified
raw
history blame
10.2 kB
# managers/seedvr_manager.py
#
# Copyright (C) 2025 Carlos Rodrigues dos Santos
#
# Version: 2.3.2
#
# Esta versão implementa uma correção robusta para o FileNotFoundError da configuração do VAE,
# antecipando a falha, carregando as configurações manualmente e fundindo-as para
# contornar o caminho fixo problemático na biblioteca externa.
import torch
import os
import gc
import logging
import sys
import subprocess
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file
import gradio as gr
import mediapy
from einops import rearrange
from tools.tensor_utils import wavelet_reconstruction
logger = logging.getLogger(__name__)
# --- Gerenciamento de Dependências ---
DEPS_DIR = Path("./deps")
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml"
def setup_seedvr_dependencies():
"""Garante que o repositório do SeedVR seja clonado e esteja disponível no sys.path."""
if not SEEDVR_REPO_DIR.exists():
logger.info(f"Repositório SeedVR não encontrado em '{SEEDVR_REPO_DIR}'. Clonando do GitHub...")
try:
DEPS_DIR.mkdir(exist_ok=True)
subprocess.run(["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], check=True, capture_output=True, text=True)
logger.info("Repositório SeedVR clonado com sucesso.")
except subprocess.CalledProcessError as e:
logger.error(f"Falha ao clonar o repositório SeedVR. Git stderr: {e.stderr}")
raise RuntimeError("Não foi possível clonar a dependência necessária do SeedVR do GitHub.")
else:
logger.info("Repositório SeedVR local encontrado.")
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
logger.info(f"Adicionado '{SEEDVR_REPO_DIR.resolve()}' ao sys.path.")
setup_seedvr_dependencies()
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.seed import set_seed
from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
from omegaconf import OmegaConf
def _load_file_from_url(url, model_dir='./', file_name=None):
os.makedirs(model_dir, exist_ok=True)
filename = file_name or os.path.basename(urlparse(url).path)
cached_file = os.path.abspath(os.path.join(model_dir, filename))
if not os.path.exists(cached_file):
logger.info(f'Baixando: "{url}" para {cached_file}')
download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
return cached_file
class SeedVrManager:
"""Gerencia o modelo SeedVR para tarefas de Masterização HD."""
def __init__(self, workspace_dir="deformes_workspace"):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.runner = None
self.workspace_dir = workspace_dir
self.is_initialized = False
logger.info("SeedVrManager inicializado. O modelo será carregado sob demanda.")
def _download_models_and_configs(self):
"""Baixa os checkpoints necessários E o arquivo de configuração do VAE que pode estar faltando."""
logger.info("Verificando e baixando modelos e configurações do SeedVR2...")
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
config_dir = SEEDVR_REPO_DIR / 'configs' / 'vae'
ckpt_dir.mkdir(exist_ok=True)
config_dir.mkdir(parents=True, exist_ok=True)
_load_file_from_url(url=VAE_CONFIG_URL, model_dir=str(config_dir))
pretrain_model_urls = {
'vae_ckpt': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
}
for key, url in pretrain_model_urls.items():
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
logger.info("Modelos e configurações do SeedVR2 baixados com sucesso.")
def _initialize_runner(self, model_version: str):
"""Carrega e configura o modelo SeedVR, com uma correção robusta para o caminho da config do VAE."""
if self.runner is not None: return
self._download_models_and_configs()
logger.info(f"Inicializando o executor do SeedVR2 {model_version}...")
if model_version == '3B':
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth'
elif model_version == '7B':
config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml'
checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth'
else:
raise ValueError(f"Versão do modelo SeedVR não suportada: {model_version}")
try:
config = load_config(str(config_path))
except FileNotFoundError:
logger.warning("FileNotFoundError esperado capturado. Carregando config manualmente.")
config = OmegaConf.load(str(config_path))
correct_vae_config_path = SEEDVR_REPO_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml'
vae_config = OmegaConf.load(str(correct_vae_config_path))
config.vae = vae_config
logger.info("Configuração carregada e corrigida manualmente com sucesso.")
self.runner = VideoDiffusionInfer(config)
OmegaConf.set_readonly(self.runner.config, False)
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
self.runner.configure_vae_model()
if hasattr(self.runner.vae, "set_memory_limit"):
self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit)
self.is_initialized = True
logger.info(f"Executor para SeedVR2 {model_version} inicializado e pronto.")
def _unload_runner(self):
"""Remove o executor da VRAM para liberar recursos."""
if self.runner is not None:
del self.runner; self.runner = None
gc.collect(); torch.cuda.empty_cache()
self.is_initialized = False
logger.info("Executor do SeedVR2 descarregado da VRAM.")
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
model_version: str = '3B', steps: int = 50, seed: int = 666,
progress: gr.Progress = None) -> str:
"""Aplica o aprimoramento HD a um vídeo usando a lógica do SeedVR."""
try:
self._initialize_runner(model_version)
set_seed(seed, same_across_ranks=True)
self.runner.config.diffusion.timesteps.sampling.steps = steps
self.runner.configure_diffusion()
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
res_h, res_w = video_tensor.shape[-2:]
video_transform = Compose([
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
DivisibleCrop((16, 16)),
Normalize(0.5, 0.5),
Rearrange("t c h w -> c t h w"),
])
cond_latents = [video_transform(video_tensor.to(self.device))]
input_videos = cond_latents
self.runner.dit.to("cpu")
self.runner.vae.to(self.device)
cond_latents = self.runner.vae_encode(cond_latents)
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.dit.to(self.device)
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
noises = [torch.randn_like(latent) for latent in cond_latents]
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
self.runner.vae.to(self.device)
samples = self.runner.vae_decode(video_tensors)
final_sample = samples[0]
input_video_sample = input_videos[0]
if final_sample.shape[1] < input_video_sample.shape[1]:
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
final_sample = wavelet_reconstruction(rearrange(final_sample, "c t h w -> t c h w"), rearrange(input_video_sample, "c t h w -> t c h w"))
final_sample = rearrange(final_sample, "t c h w -> t h w c")
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
mediapy.write_video(output_video_path, final_sample_np, fps=24)
logger.info(f"Vídeo Masterizado em HD salvo em: {output_video_path}")
return output_video_path
finally:
self._unload_runner()
# --- Instância Singleton ---
seedvr_manager_singleton = SeedVrManager()