Spaces:
Runtime error
Runtime error
| # managers/seedvr_manager.py | |
| # | |
| # Copyright (C) 2025 Carlos Rodrigues dos Santos | |
| # | |
| # Version: 2.3.2 | |
| # | |
| # Esta versão implementa uma correção robusta para o FileNotFoundError da configuração do VAE, | |
| # antecipando a falha, carregando as configurações manualmente e fundindo-as para | |
| # contornar o caminho fixo problemático na biblioteca externa. | |
| import torch | |
| import os | |
| import gc | |
| import logging | |
| import sys | |
| import subprocess | |
| from pathlib import Path | |
| from urllib.parse import urlparse | |
| from torch.hub import download_url_to_file | |
| import gradio as gr | |
| import mediapy | |
| from einops import rearrange | |
| from tools.tensor_utils import wavelet_reconstruction | |
| logger = logging.getLogger(__name__) | |
| # --- Gerenciamento de Dependências --- | |
| DEPS_DIR = Path("./deps") | |
| SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR" | |
| SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git" | |
| VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml" | |
| def setup_seedvr_dependencies(): | |
| """Garante que o repositório do SeedVR seja clonado e esteja disponível no sys.path.""" | |
| if not SEEDVR_REPO_DIR.exists(): | |
| logger.info(f"Repositório SeedVR não encontrado em '{SEEDVR_REPO_DIR}'. Clonando do GitHub...") | |
| try: | |
| DEPS_DIR.mkdir(exist_ok=True) | |
| subprocess.run(["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)], check=True, capture_output=True, text=True) | |
| logger.info("Repositório SeedVR clonado com sucesso.") | |
| except subprocess.CalledProcessError as e: | |
| logger.error(f"Falha ao clonar o repositório SeedVR. Git stderr: {e.stderr}") | |
| raise RuntimeError("Não foi possível clonar a dependência necessária do SeedVR do GitHub.") | |
| else: | |
| logger.info("Repositório SeedVR local encontrado.") | |
| if str(SEEDVR_REPO_DIR.resolve()) not in sys.path: | |
| sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve())) | |
| logger.info(f"Adicionado '{SEEDVR_REPO_DIR.resolve()}' ao sys.path.") | |
| setup_seedvr_dependencies() | |
| from projects.video_diffusion_sr.infer import VideoDiffusionInfer | |
| from common.config import load_config | |
| from common.seed import set_seed | |
| from data.image.transforms.divisible_crop import DivisibleCrop | |
| from data.image.transforms.na_resize import NaResize | |
| from data.video.transforms.rearrange import Rearrange | |
| from torchvision.transforms import Compose, Lambda, Normalize | |
| from torchvision.io.video import read_video | |
| from omegaconf import OmegaConf | |
| def _load_file_from_url(url, model_dir='./', file_name=None): | |
| os.makedirs(model_dir, exist_ok=True) | |
| filename = file_name or os.path.basename(urlparse(url).path) | |
| cached_file = os.path.abspath(os.path.join(model_dir, filename)) | |
| if not os.path.exists(cached_file): | |
| logger.info(f'Baixando: "{url}" para {cached_file}') | |
| download_url_to_file(url, cached_file, hash_prefix=None, progress=True) | |
| return cached_file | |
| class SeedVrManager: | |
| """Gerencia o modelo SeedVR para tarefas de Masterização HD.""" | |
| def __init__(self, workspace_dir="deformes_workspace"): | |
| self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| self.runner = None | |
| self.workspace_dir = workspace_dir | |
| self.is_initialized = False | |
| logger.info("SeedVrManager inicializado. O modelo será carregado sob demanda.") | |
| def _download_models_and_configs(self): | |
| """Baixa os checkpoints necessários E o arquivo de configuração do VAE que pode estar faltando.""" | |
| logger.info("Verificando e baixando modelos e configurações do SeedVR2...") | |
| ckpt_dir = SEEDVR_REPO_DIR / 'ckpts' | |
| config_dir = SEEDVR_REPO_DIR / 'configs' / 'vae' | |
| ckpt_dir.mkdir(exist_ok=True) | |
| config_dir.mkdir(parents=True, exist_ok=True) | |
| _load_file_from_url(url=VAE_CONFIG_URL, model_dir=str(config_dir)) | |
| pretrain_model_urls = { | |
| 'vae_ckpt': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth', | |
| 'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth', | |
| 'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth', | |
| 'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt', | |
| 'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt' | |
| } | |
| for key, url in pretrain_model_urls.items(): | |
| _load_file_from_url(url=url, model_dir=str(ckpt_dir)) | |
| logger.info("Modelos e configurações do SeedVR2 baixados com sucesso.") | |
| def _initialize_runner(self, model_version: str): | |
| """Carrega e configura o modelo SeedVR, com uma correção robusta para o caminho da config do VAE.""" | |
| if self.runner is not None: return | |
| self._download_models_and_configs() | |
| logger.info(f"Inicializando o executor do SeedVR2 {model_version}...") | |
| if model_version == '3B': | |
| config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml' | |
| checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_3b.pth' | |
| elif model_version == '7B': | |
| config_path = SEEDVR_REPO_DIR / 'configs_7b' / 'main.yaml' | |
| checkpoint_path = SEEDVR_REPO_DIR / 'ckpts' / 'seedvr2_ema_7b.pth' | |
| else: | |
| raise ValueError(f"Versão do modelo SeedVR não suportada: {model_version}") | |
| try: | |
| config = load_config(str(config_path)) | |
| except FileNotFoundError: | |
| logger.warning("FileNotFoundError esperado capturado. Carregando config manualmente.") | |
| config = OmegaConf.load(str(config_path)) | |
| correct_vae_config_path = SEEDVR_REPO_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml' | |
| vae_config = OmegaConf.load(str(correct_vae_config_path)) | |
| config.vae = vae_config | |
| logger.info("Configuração carregada e corrigida manualmente com sucesso.") | |
| self.runner = VideoDiffusionInfer(config) | |
| OmegaConf.set_readonly(self.runner.config, False) | |
| self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path)) | |
| self.runner.configure_vae_model() | |
| if hasattr(self.runner.vae, "set_memory_limit"): | |
| self.runner.vae.set_memory_limit(**self.runner.config.vae.memory_limit) | |
| self.is_initialized = True | |
| logger.info(f"Executor para SeedVR2 {model_version} inicializado e pronto.") | |
| def _unload_runner(self): | |
| """Remove o executor da VRAM para liberar recursos.""" | |
| if self.runner is not None: | |
| del self.runner; self.runner = None | |
| gc.collect(); torch.cuda.empty_cache() | |
| self.is_initialized = False | |
| logger.info("Executor do SeedVR2 descarregado da VRAM.") | |
| def process_video(self, input_video_path: str, output_video_path: str, prompt: str, | |
| model_version: str = '3B', steps: int = 50, seed: int = 666, | |
| progress: gr.Progress = None) -> str: | |
| """Aplica o aprimoramento HD a um vídeo usando a lógica do SeedVR.""" | |
| try: | |
| self._initialize_runner(model_version) | |
| set_seed(seed, same_across_ranks=True) | |
| self.runner.config.diffusion.timesteps.sampling.steps = steps | |
| self.runner.configure_diffusion() | |
| video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0 | |
| res_h, res_w = video_tensor.shape[-2:] | |
| video_transform = Compose([ | |
| NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False), | |
| Lambda(lambda x: torch.clamp(x, 0.0, 1.0)), | |
| DivisibleCrop((16, 16)), | |
| Normalize(0.5, 0.5), | |
| Rearrange("t c h w -> c t h w"), | |
| ]) | |
| cond_latents = [video_transform(video_tensor.to(self.device))] | |
| input_videos = cond_latents | |
| self.runner.dit.to("cpu") | |
| self.runner.vae.to(self.device) | |
| cond_latents = self.runner.vae_encode(cond_latents) | |
| self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache() | |
| self.runner.dit.to(self.device) | |
| pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt' | |
| neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt' | |
| text_pos_embeds = torch.load(pos_emb_path).to(self.device) | |
| text_neg_embeds = torch.load(neg_emb_path).to(self.device) | |
| text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]} | |
| noises = [torch.randn_like(latent) for latent in cond_latents] | |
| conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)] | |
| with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True): | |
| video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict) | |
| self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache() | |
| self.runner.vae.to(self.device) | |
| samples = self.runner.vae_decode(video_tensors) | |
| final_sample = samples[0] | |
| input_video_sample = input_videos[0] | |
| if final_sample.shape[1] < input_video_sample.shape[1]: | |
| input_video_sample = input_video_sample[:, :final_sample.shape[1]] | |
| final_sample = wavelet_reconstruction(rearrange(final_sample, "c t h w -> t c h w"), rearrange(input_video_sample, "c t h w -> t c h w")) | |
| final_sample = rearrange(final_sample, "t c h w -> t h w c") | |
| final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round() | |
| final_sample_np = final_sample.to(torch.uint8).cpu().numpy() | |
| mediapy.write_video(output_video_path, final_sample_np, fps=24) | |
| logger.info(f"Vídeo Masterizado em HD salvo em: {output_video_path}") | |
| return output_video_path | |
| finally: | |
| self._unload_runner() | |
| # --- Instância Singleton --- | |
| seedvr_manager_singleton = SeedVrManager() |