Spaces:
Runtime error
Runtime error
| # optimization.py | |
| # AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR | |
| # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
| # | |
| # Contato: | |
| # Carlos Rodrigues dos Santos | |
| # [email protected] | |
| # Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025 | |
| # | |
| # Repositórios e Projetos Relacionados: | |
| # GitHub: https://github.com/carlex22/Aduc-sdr | |
| # | |
| # This program is free software: you can redistribute it and/or modify | |
| # it under the terms of the GNU Affero General Public License as published by | |
| # the Free Software Foundation, either version 3 of the License, or | |
| # (at your option) any later version. | |
| # | |
| # This program is distributed in the hope that it will be useful, | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
| # GNU Affero General Public License for more details. | |
| # | |
| # You should have received a copy of the GNU Affero General Public License | |
| # along with this program. If not, see <https://www.gnu.org/licenses/>. | |
| # | |
| # This program is free software: you can redistribute it and/or modify | |
| # it under the terms of the GNU Affero General Public License... | |
| # PENDING PATENT NOTICE: Please see NOTICE.md. | |
| import torch | |
| import logging | |
| from torchao.quantization import quantize_, float8_dynamic_activation_float8_weight | |
| # Usamos type hints com strings para evitar importações circulares | |
| from typing import TYPE_CHECKING | |
| if TYPE_CHECKING: | |
| from ltx_manager_helpers import LtxWorker | |
| logger = logging.getLogger(__name__) | |
| def can_optimize_fp8(): | |
| """Verifica se a GPU atual suporta otimizações FP8.""" | |
| if not torch.cuda.is_available(): | |
| return False | |
| major, _ = torch.cuda.get_device_capability() | |
| if major >= 9: # Arquitetura Hopper | |
| logger.info(f"GPU com arquitetura Hopper ou superior (CC {major}.x) detectada. Ativando quantização FP8.") | |
| return True | |
| if major == 8: | |
| device_name = torch.cuda.get_device_name(0).lower() | |
| if "h100" in device_name or "l40" in device_name or "rtx 40" in device_name: # Arquitetura Ada Lovelace | |
| logger.info(f"GPU com arquitetura Ada Lovelace (CC 8.9, Nome: {device_name}) detectada. Ativando quantização FP8.") | |
| return True | |
| logger.warning(f"A GPU atual (CC {major}.x) não tem suporte otimizado para FP8. Pulando quantização.") | |
| return False | |
| def optimize_ltx_worker(worker: "LtxWorker"): | |
| """Aplica quantização FP8 ao transformador do pipeline LTX.""" | |
| pipeline = worker.pipeline | |
| device = worker.device | |
| logger.info(f"Iniciando quantização FP8 do transformador LTX no dispositivo {device}...") | |
| quantize_(pipeline.transformer, float8_dynamic_activation_float8_weight()) | |
| torch.cuda.empty_cache() | |
| logger.info(f"Quantização FP8 do LTX Worker no dispositivo {device} concluída com sucesso!") |