Spaces:
Runtime error
Runtime error
| # flux_kontext_helpers.py (ADUC: O Especialista Pintor - com suporte a callback) | |
| # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
| import torch | |
| from PIL import Image, ImageOps | |
| import gc | |
| from diffusers import FluxKontextPipeline | |
| import huggingface_hub | |
| import os | |
| import threading | |
| import yaml | |
| import logging | |
| from hardware_manager import hardware_manager | |
| logger = logging.getLogger(__name__) | |
| class FluxWorker: | |
| """Representa uma única instância do pipeline FluxKontext em um dispositivo.""" | |
| def __init__(self, device_id='cuda:0'): | |
| self.cpu_device = torch.device('cpu') | |
| self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') | |
| self.pipe = None | |
| self._load_pipe_to_cpu() | |
| def _load_pipe_to_cpu(self): | |
| if self.pipe is None: | |
| logger.info(f"FLUX Worker ({self.device}): Carregando modelo para a CPU...") | |
| self.pipe = FluxKontextPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16 | |
| ).to(self.cpu_device) | |
| logger.info(f"FLUX Worker ({self.device}): Modelo pronto na CPU.") | |
| def to_gpu(self): | |
| if self.device.type == 'cpu': return | |
| logger.info(f"FLUX Worker: Movendo modelo para a GPU {self.device}...") | |
| self.pipe.to(self.device) | |
| def to_cpu(self): | |
| if self.device.type == 'cpu': return | |
| logger.info(f"FLUX Worker: Descarregando modelo da GPU {self.device}...") | |
| self.pipe.to(self.cpu_device) | |
| gc.collect() | |
| if torch.cuda.is_available(): torch.cuda.empty_cache() | |
| def _create_composite_reference(self, images: list[Image.Image], target_width: int, target_height: int) -> Image.Image: | |
| if not images: return None | |
| valid_images = [img.convert("RGB") for img in images if img is not None] | |
| if not valid_images: return None | |
| if len(valid_images) == 1: | |
| if valid_images[0].size != (target_width, target_height): | |
| return ImageOps.fit(valid_images[0], (target_width, target_height), Image.Resampling.LANCZOS) | |
| return valid_images[0] | |
| base_height = valid_images[0].height | |
| resized_for_concat = [] | |
| for img in valid_images: | |
| if img.height != base_height: | |
| aspect_ratio = img.width / img.height | |
| new_width = int(base_height * aspect_ratio) | |
| resized_for_concat.append(img.resize((new_width, base_height), Image.Resampling.LANCZOS)) | |
| else: | |
| resized_for_concat.append(img) | |
| total_width = sum(img.width for img in resized_for_concat) | |
| concatenated = Image.new('RGB', (total_width, base_height)) | |
| x_offset = 0 | |
| for img in resized_for_concat: | |
| concatenated.paste(img, (x_offset, 0)) | |
| x_offset += img.width | |
| #final_reference = ImageOps.fit(concatenated, (target_width, target_height), Image.Resampling.LANCZOS) | |
| return concatenated | |
| def generate_image_internal(self, reference_images: list[Image.Image], prompt: str, target_width: int, target_height: int, seed: int, callback: callable = None): | |
| composite_reference = self._create_composite_reference(reference_images, target_width, target_height) | |
| num_steps = 12 # Valor fixo otimizado | |
| logger.info(f"\n===== [CHAMADA AO PIPELINE FLUX em {self.device}] =====\n" | |
| f" - Prompt: '{prompt}'\n" | |
| f" - Resolução: {target_width}x{target_height}, Seed: {seed}, Passos: {num_steps}\n" | |
| f" - Nº de Imagens na Composição: {len(reference_images)}\n" | |
| f"==========================================") | |
| generated_image = self.pipe( | |
| image=composite_reference, | |
| prompt=prompt, | |
| guidance_scale=2.5, | |
| width=target_width, | |
| height=target_height, | |
| num_inference_steps=num_steps, | |
| generator=torch.Generator(device="cpu").manual_seed(seed), | |
| callback_on_step_end=callback, | |
| callback_on_step_end_tensor_inputs=["latents"] if callback else None | |
| ).images[0] | |
| return generated_image | |
| class FluxPoolManager: | |
| def __init__(self, device_ids): | |
| logger.info(f"FLUX POOL MANAGER: Criando workers para os dispositivos: {device_ids}") | |
| self.workers = [FluxWorker(device_id) for device_id in device_ids] | |
| self.current_worker_index = 0 | |
| self.lock = threading.Lock() | |
| self.last_cleanup_thread = None | |
| def _cleanup_worker_thread(self, worker): | |
| logger.info(f"FLUX CLEANUP THREAD: Iniciando limpeza de {worker.device} em background...") | |
| worker.to_cpu() | |
| def generate_image(self, reference_images, prompt, width, height, seed=42, callback=None): | |
| worker_to_use = None | |
| try: | |
| with self.lock: | |
| if self.last_cleanup_thread and self.last_cleanup_thread.is_alive(): | |
| self.last_cleanup_thread.join() | |
| worker_to_use = self.workers[self.current_worker_index] | |
| previous_worker_index = (self.current_worker_index - 1 + len(self.workers)) % len(self.workers) | |
| worker_to_cleanup = self.workers[previous_worker_index] | |
| cleanup_thread = threading.Thread(target=self._cleanup_worker_thread, args=(worker_to_cleanup,)) | |
| cleanup_thread.start() | |
| self.last_cleanup_thread = cleanup_thread | |
| worker_to_use.to_gpu() | |
| self.current_worker_index = (self.current_worker_index + 1) % len(self.workers) | |
| logger.info(f"FLUX POOL MANAGER: Gerando imagem em {worker_to_use.device}...") | |
| return worker_to_use.generate_image_internal( | |
| reference_images=reference_images, | |
| prompt=prompt, | |
| target_width=width, | |
| target_height=height, | |
| seed=seed, | |
| callback=callback | |
| ) | |
| except Exception as e: | |
| logger.error(f"FLUX POOL MANAGER: Erro durante a geração: {e}", exc_info=True) | |
| raise e | |
| finally: | |
| pass | |
| # --- Instanciação Singleton Dinâmica --- | |
| logger.info("Lendo config.yaml para inicializar o FluxKontext Pool Manager...") | |
| with open("config.yaml", 'r') as f: config = yaml.safe_load(f) | |
| hf_token = os.getenv('HF_TOKEN'); | |
| if hf_token: huggingface_hub.login(token=hf_token) | |
| flux_gpus_required = config['specialists']['flux']['gpus_required'] | |
| flux_device_ids = hardware_manager.allocate_gpus('Flux', flux_gpus_required) | |
| flux_kontext_singleton = FluxPoolManager(device_ids=flux_device_ids) | |
| logger.info("Especialista de Imagem (Flux) pronto.") |