Spaces:
Runtime error
Runtime error
| # ltx_manager_helpers.py | |
| # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
| # | |
| # ORIGINAL SOURCE: LTX-Video by Lightricks Ltd. & other open-source projects. | |
| # Licensed under the Apache License, Version 2.0 | |
| # https://github.com/Lightricks/LTX-Video | |
| # | |
| # MODIFICATIONS FOR ADUC-SDR_Video: | |
| # This file is part of ADUC-SDR_Video, a derivative work based on LTX-Video. | |
| # It has been modified to manage pools of LTX workers, handle GPU memory, | |
| # and prepare parameters for the ADUC-SDR orchestration framework. | |
| # All modifications are also licensed under the Apache License, Version 2.0. | |
| import torch | |
| import gc | |
| import os | |
| import yaml | |
| import logging | |
| import huggingface_hub | |
| import time | |
| import threading | |
| import json | |
| from optimization import optimize_ltx_worker, can_optimize_fp8 | |
| from hardware_manager import hardware_manager | |
| from inference import create_ltx_video_pipeline, calculate_padding | |
| from ltx_video.pipelines.pipeline_ltx_video import LatentConditioningItem | |
| from ltx_video.models.autoencoders.vae_encode import vae_decode | |
| logger = logging.getLogger(__name__) | |
| class LtxWorker: | |
| def __init__(self, device_id, ltx_config_file): | |
| self.cpu_device = torch.device('cpu') | |
| self.device = torch.device(device_id if torch.cuda.is_available() else 'cpu') | |
| logger.info(f"LTX Worker ({self.device}): Inicializando com config '{ltx_config_file}'...") | |
| with open(ltx_config_file, "r") as file: | |
| self.config = yaml.safe_load(file) | |
| self.is_distilled = "distilled" in self.config.get("checkpoint_path", "") | |
| models_dir = "downloaded_models_gradio" | |
| logger.info(f"LTX Worker ({self.device}): Carregando modelo para a CPU...") | |
| model_path = os.path.join(models_dir, self.config["checkpoint_path"]) | |
| if not os.path.exists(model_path): | |
| model_path = huggingface_hub.hf_hub_download( | |
| repo_id="Lightricks/LTX-Video", filename=self.config["checkpoint_path"], | |
| local_dir=models_dir, local_dir_use_symlinks=False | |
| ) | |
| self.pipeline = create_ltx_video_pipeline( | |
| ckpt_path=model_path, precision=self.config["precision"], | |
| text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
| sampler=self.config["sampler"], device='cpu' | |
| ) | |
| logger.info(f"LTX Worker ({self.device}): Modelo pronto na CPU. É um modelo destilado? {self.is_distilled}") | |
| if self.device.type == 'cuda' and can_optimize_fp8(): | |
| logger.info(f"LTX Worker ({self.device}): GPU com suporte a FP8 detectada. Iniciando otimização...") | |
| self.pipeline.to(self.device) | |
| optimize_ltx_worker(self) | |
| self.pipeline.to(self.cpu_device) | |
| logger.info(f"LTX Worker ({self.device}): Otimização concluída. Modelo pronto.") | |
| elif self.device.type == 'cuda': | |
| logger.info(f"LTX Worker ({self.device}): Otimização FP8 não suportada ou desativada. Usando modelo padrão.") | |
| def to_gpu(self): | |
| if self.device.type == 'cpu': return | |
| logger.info(f"LTX Worker: Movendo pipeline para a GPU {self.device}...") | |
| self.pipeline.to(self.device) | |
| def to_cpu(self): | |
| if self.device.type == 'cpu': return | |
| logger.info(f"LTX Worker: Descarregando pipeline da GPU {self.device}...") | |
| self.pipeline.to('cpu') | |
| gc.collect() | |
| if torch.cuda.is_available(): torch.cuda.empty_cache() | |
| def generate_video_fragment_internal(self, **kwargs): | |
| return self.pipeline(**kwargs).images | |
| class LtxPoolManager: | |
| def __init__(self, device_ids, ltx_config_file): | |
| logger.info(f"LTX POOL MANAGER: Criando workers para os dispositivos: {device_ids}") | |
| self.workers = [LtxWorker(dev_id, ltx_config_file) for dev_id in device_ids] | |
| self.current_worker_index = 0 | |
| self.lock = threading.Lock() | |
| self.last_cleanup_thread = None | |
| def _cleanup_worker_thread(self, worker): | |
| logger.info(f"LTX CLEANUP THREAD: Iniciando limpeza de {worker.device} em background...") | |
| worker.to_cpu() | |
| def _prepare_and_log_params(self, worker_to_use, **kwargs): | |
| target_device = worker_to_use.device | |
| height, width = kwargs['height'], kwargs['width'] | |
| conditioning_data = kwargs.get('conditioning_items_data', []) | |
| final_conditioning_items = [] | |
| # --- LOG ADICIONADO: Detalhes dos tensores de condicionamento --- | |
| conditioning_log_details = [] | |
| for i, item in enumerate(conditioning_data): | |
| if hasattr(item, 'latent_tensor'): | |
| item.latent_tensor = item.latent_tensor.to(target_device) | |
| final_conditioning_items.append(item) | |
| conditioning_log_details.append( | |
| f" - Item {i}: frame={item.media_frame_number}, strength={item.conditioning_strength:.2f}, shape={list(item.latent_tensor.shape)}" | |
| ) | |
| first_pass_config = worker_to_use.config.get("first_pass", {}) | |
| padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 | |
| padding_vals = calculate_padding(height, width, padded_h, padded_w) | |
| pipeline_params = { | |
| "height": padded_h, "width": padded_w, | |
| "num_frames": kwargs['video_total_frames'], "frame_rate": kwargs['video_fps'], | |
| "generator": torch.Generator(device=target_device).manual_seed(int(kwargs.get('seed', time.time())) + kwargs['current_fragment_index']), | |
| "conditioning_items": final_conditioning_items, | |
| "is_video": True, "vae_per_channel_normalize": True, | |
| "decode_timestep": float(kwargs.get('decode_timestep', worker_to_use.config.get("decode_timestep", 0.05))), | |
| "decode_noise_scale": float(kwargs.get('decode_noise_scale', worker_to_use.config.get("decode_noise_scale", 0.025))), | |
| "image_cond_noise_scale": float(kwargs.get('image_cond_noise_scale', 0.0)), | |
| "stochastic_sampling": bool(kwargs.get('stochastic_sampling', worker_to_use.config.get("stochastic_sampling", False))), | |
| "prompt": kwargs['motion_prompt'], | |
| "negative_prompt": kwargs.get('negative_prompt', "blurry, distorted, static, bad quality, artifacts"), | |
| "guidance_scale": float(kwargs.get('guidance_scale', 1.0)), | |
| "stg_scale": float(kwargs.get('stg_scale', 0.0)), | |
| "rescaling_scale": float(kwargs.get('rescaling_scale', 1.0)), | |
| } | |
| if worker_to_use.is_distilled: | |
| pipeline_params["timesteps"] = first_pass_config.get("timesteps") | |
| pipeline_params["num_inference_steps"] = len(pipeline_params["timesteps"]) if "timesteps" in first_pass_config else 8 | |
| else: | |
| pipeline_params["num_inference_steps"] = int(kwargs.get('num_inference_steps', 7)) | |
| # --- LOG ADICIONADO: Exibição completa dos parâmetros da pipeline --- | |
| log_friendly_params = pipeline_params.copy() | |
| log_friendly_params.pop('generator', None) | |
| log_friendly_params.pop('conditioning_items', None) | |
| logger.info("="*60) | |
| logger.info(f"CHAMADA AO PIPELINE LTX NO DISPOSITIVO: {worker_to_use.device}") | |
| logger.info(f"Modelo: {'Distilled' if worker_to_use.is_distilled else 'Base'}") | |
| logger.info("-" * 20 + " PARÂMETROS DA PIPELINE " + "-" * 20) | |
| logger.info(json.dumps(log_friendly_params, indent=2)) | |
| logger.info("-" * 20 + " ITENS DE CONDICIONAMENTO " + "-" * 19) | |
| logger.info("\n".join(conditioning_log_details)) | |
| logger.info("="*60) | |
| # --- FIM DO LOG ADICIONADO --- | |
| return pipeline_params, padding_vals | |
| def generate_latent_fragment(self, **kwargs) -> (torch.Tensor, tuple): | |
| worker_to_use = None | |
| progress = kwargs.get('progress') | |
| try: | |
| with self.lock: | |
| if self.last_cleanup_thread and self.last_cleanup_thread.is_alive(): | |
| self.last_cleanup_thread.join() | |
| worker_to_use = self.workers[self.current_worker_index] | |
| previous_worker_index = (self.current_worker_index - 1 + len(self.workers)) % len(self.workers) | |
| worker_to_cleanup = self.workers[previous_worker_index] | |
| cleanup_thread = threading.Thread(target=self._cleanup_worker_thread, args=(worker_to_cleanup,)) | |
| cleanup_thread.start() | |
| self.last_cleanup_thread = cleanup_thread | |
| worker_to_use.to_gpu() | |
| self.current_worker_index = (self.current_worker_index + 1) % len(self.workers) | |
| pipeline_params, padding_vals = self._prepare_and_log_params(worker_to_use, **kwargs) | |
| pipeline_params['output_type'] = "latent" | |
| if progress: progress(0.1, desc=f"[Especialista LTX em {worker_to_use.device}] Gerando latentes...") | |
| with torch.no_grad(): | |
| result_tensor = worker_to_use.generate_video_fragment_internal(**pipeline_params) | |
| return result_tensor, padding_vals | |
| except Exception as e: | |
| logger.error(f"LTX POOL MANAGER: Erro durante a geração de latentes: {e}", exc_info=True) | |
| raise e | |
| finally: | |
| if worker_to_use: | |
| logger.info(f"LTX POOL MANAGER: Executando limpeza final para {worker_to_use.device}...") | |
| worker_to_use.to_cpu() | |
| logger.info("Lendo config.yaml para inicializar o LTX Pool Manager...") | |
| with open("config.yaml", 'r') as f: | |
| config = yaml.safe_load(f) | |
| ltx_gpus_required = config['specialists']['ltx']['gpus_required'] | |
| ltx_device_ids = hardware_manager.allocate_gpus('LTX', ltx_gpus_required) | |
| ltx_config_path = config['specialists']['ltx']['config_file'] | |
| ltx_manager_singleton = LtxPoolManager(device_ids=ltx_device_ids, ltx_config_file=ltx_config_path) | |
| logger.info("Especialista de Vídeo (LTX) pronto.") |