euiia commited on
Commit
478560e
·
verified ·
1 Parent(s): 7a0106c

Update hd_specialist.py

Browse files
Files changed (1) hide show
  1. hd_specialist.py +40 -93
hd_specialist.py CHANGED
@@ -1,6 +1,5 @@
1
- # hd_specialist.py (Versão Corrigida, usando o código-fonte do SeedVR)
2
- # https://huggingface.co/spaces/ByteDance-Seed/SeedVR2-3B/tree/main
3
-
4
  import torch
5
  import imageio
6
  import os
@@ -16,21 +15,30 @@ from urllib.parse import urlparse
16
  from torch.hub import download_url_to_file, get_dir
17
  from omegaconf import OmegaConf
18
 
19
- # --- Importações do código-fonte do SeedVR ---
20
- # Certifique-se de que a pasta 'SeedVR' está no seu projeto
21
- from SeedVR.projects.video_diffusion_sr.infer import VideoDiffusionInfer
22
- from SeedVR.common.config import load_config
23
- from SeedVR.common.seed import set_seed
24
- from SeedVR.data.image.transforms.divisible_crop import DivisibleCrop
25
- from SeedVR.data.image.transforms.na_resize import NaResize
26
- from SeedVR.data.video.transforms.rearrange import Rearrange
27
- from SeedVR.projects.video_diffusion_sr.color_fix import wavelet_reconstruction
28
  from torchvision.transforms import Compose, Lambda, Normalize
29
  from torchvision.io.video import read_video
30
  from einops import rearrange
31
 
32
  logger = logging.getLogger(__name__)
33
 
 
 
 
 
 
 
 
 
 
 
34
  class HDSpecialist:
35
  """
36
  Implementa o Especialista HD (Δ+) usando a infraestrutura oficial do SeedVR.
@@ -42,8 +50,18 @@ class HDSpecialist:
42
  self.is_initialized = False
43
  logger.info("Especialista HD (SeedVR) inicializado. Modelo será carregado sob demanda.")
44
 
 
 
 
 
 
 
 
 
 
 
45
  def _download_models(self):
46
- """Baixa os checkpoints e dependências necessários para o SeedVR2."""
47
  logger.info("Verificando e baixando modelos do SeedVR2...")
48
  ckpt_dir = Path('./ckpts')
49
  ckpt_dir.mkdir(exist_ok=True)
@@ -54,33 +72,23 @@ class HDSpecialist:
54
  'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
55
  'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
56
  }
57
-
58
- # Função auxiliar para download
59
- def load_file_from_url(url, model_dir='./', file_name=None):
60
- os.makedirs(model_dir, exist_ok=True)
61
- filename = file_name or os.path.basename(urlparse(url).path)
62
- cached_file = os.path.abspath(os.path.join(model_dir, filename))
63
- if not os.path.exists(cached_file):
64
- logger.info(f'Baixando: "{url}" para {cached_file}')
65
- download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
66
- return cached_file
67
-
68
- load_file_from_url(url=pretrain_model_url['dit'], model_dir='./ckpts/')
69
- load_file_from_url(url=pretrain_model_url['vae'], model_dir='./ckpts/')
70
- load_file_from_url(url=pretrain_model_url['pos_emb'])
71
- load_file_from_url(url=pretrain_model_url['neg_emb'])
72
  logger.info("Modelos do SeedVR2 baixados com sucesso.")
73
 
74
-
75
  def _initialize_runner(self):
76
  """Carrega e configura o modelo SeedVR sob demanda."""
77
  if self.runner is not None:
78
  return
79
 
 
80
  self._download_models()
81
 
82
  logger.info("Inicializando o runner do SeedVR2...")
83
- config_path = os.path.join('./SeedVR/configs_3b', 'main.yaml')
84
  config = load_config(config_path)
85
 
86
  self.runner = VideoDiffusionInfer(config)
@@ -106,73 +114,12 @@ class HDSpecialist:
106
  logger.info("Runner do SeedVR2 descarregado da VRAM.")
107
 
108
  def process_video(self, input_video_path: str, output_video_path: str, prompt: str, seed: int = 666, fps_out: int = 24) -> str:
109
- """
110
- Aplica o aprimoramento HD a um vídeo usando a lógica oficial do SeedVR.
111
- """
112
  try:
113
  self._initialize_runner()
114
  set_seed(seed, same_across_ranks=True)
 
115
 
116
- # --- Configuração do Pipeline (adaptado de app.py) ---
117
- self.runner.config.diffusion.cfg.scale = 1.0 # cfg_scale
118
- self.runner.config.diffusion.cfg.rescale = 0.0 # cfg_rescale
119
- self.runner.config.diffusion.timesteps.sampling.steps = 1 # sample_steps (one-step model)
120
- self.runner.configure_diffusion()
121
-
122
- # --- Preparação do Vídeo de Entrada ---
123
- logger.info(f"Processando vídeo de entrada: {input_video_path}")
124
- video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
125
- if video_tensor.size(0) > 121:
126
- logger.warning(f"Vídeo com {video_tensor.size(0)} frames. Truncando para 121 frames.")
127
- video_tensor = video_tensor[:121]
128
-
129
- video_transform = Compose([
130
- NaResize(resolution=(1280 * 720)**0.5, mode="area", downsample_only=False),
131
- Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
132
- DivisibleCrop((16, 16)),
133
- Normalize(0.5, 0.5),
134
- Rearrange("t c h w -> c t h w"),
135
- ])
136
-
137
- cond_latent = video_transform(video_tensor.to(self.device))
138
- input_video_for_colorfix = cond_latent.clone() # Salva para o color fix
139
- ori_length = cond_latent.size(1)
140
-
141
- # --- Codificação VAE e Geração ---
142
- logger.info("Codificando vídeo para o espaço latente...")
143
- cond_latent = self.runner.vae_encode([cond_latent])[0]
144
-
145
- text_pos_embeds = torch.load('pos_emb.pt').to(self.device)
146
- text_neg_embeds = torch.load('neg_emb.pt').to(self.device)
147
- text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
148
-
149
- noise = torch.randn_like(cond_latent)
150
-
151
- logger.info(f"Iniciando a geração de restauração para {ori_length} frames...")
152
- with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
153
- video_tensor_out = self.runner.inference(
154
- noises=[noise],
155
- conditions=[self.runner.get_condition(noise, task="sr", latent_blur=cond_latent)],
156
- dit_offload=False,
157
- **text_embeds_dict,
158
- )[0]
159
-
160
- sample = rearrange(video_tensor_out, "c t h w -> t c h w")
161
-
162
- # --- Pós-processamento e Salvamento ---
163
- if ori_length < sample.shape[0]:
164
- sample = sample[:ori_length]
165
-
166
- input_video_for_colorfix = rearrange(input_video_for_colorfix, "c t h w -> t c h w")
167
- sample = wavelet_reconstruction(sample.cpu(), input_video_for_colorfix[:sample.size(0)].cpu())
168
-
169
- sample = rearrange(sample, "t c h w -> t h w c")
170
- sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round().to(torch.uint8).numpy()
171
-
172
- logger.info(f"Salvando vídeo aprimorado em: {output_video_path}")
173
- imageio.get_writer(output_video_path, fps=fps_out, codec='libx264', quality=9).extend(sample)
174
-
175
- return output_video_path
176
  finally:
177
  self._unload_runner()
178
 
 
1
+ # hd_specialist.py (Versão Final - Estrutura de Arquivos Corrigida)
2
+ #https://huggingface.co/spaces/ByteDance-Seed/SeedVR2-3B
 
3
  import torch
4
  import imageio
5
  import os
 
15
  from torch.hub import download_url_to_file, get_dir
16
  from omegaconf import OmegaConf
17
 
18
+ # --- Importações diretas, assumindo que as pastas estão na raiz ---
19
+ from projects.video_diffusion_sr.infer import VideoDiffusionInfer
20
+ from common.config import load_config
21
+ from common.seed import set_seed
22
+ from data.image.transforms.divisible_crop import DivisibleCrop
23
+ from data.image.transforms.na_resize import NaResize
24
+ from data.video.transforms.rearrange import Rearrange
25
+ from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
 
26
  from torchvision.transforms import Compose, Lambda, Normalize
27
  from torchvision.io.video import read_video
28
  from einops import rearrange
29
 
30
  logger = logging.getLogger(__name__)
31
 
32
+ # Função auxiliar para download
33
+ def _load_file_from_url(url, model_dir='./', file_name=None):
34
+ os.makedirs(model_dir, exist_ok=True)
35
+ filename = file_name or os.path.basename(urlparse(url).path)
36
+ cached_file = os.path.abspath(os.path.join(model_dir, filename))
37
+ if not os.path.exists(cached_file):
38
+ logger.info(f'Baixando: "{url}" para {cached_file}')
39
+ download_url_to_file(url, cached_file, hash_prefix=None, progress=True)
40
+ return cached_file
41
+
42
  class HDSpecialist:
43
  """
44
  Implementa o Especialista HD (Δ+) usando a infraestrutura oficial do SeedVR.
 
50
  self.is_initialized = False
51
  logger.info("Especialista HD (SeedVR) inicializado. Modelo será carregado sob demanda.")
52
 
53
+ def _setup_dependencies(self):
54
+ """Instala dependências complexas como Apex."""
55
+ logger.info("Configurando dependências do SeedVR (Apex)...")
56
+ apex_url = 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
57
+ apex_wheel_path = _load_file_from_url(url=apex_url)
58
+
59
+ # Instala a roda do Apex baixada
60
+ subprocess.run(shlex.split(f"pip install {apex_wheel_path}"), check=True)
61
+ logger.info("✅ Dependência Apex instalada com sucesso.")
62
+
63
  def _download_models(self):
64
+ """Baixa os checkpoints necessários para o SeedVR2."""
65
  logger.info("Verificando e baixando modelos do SeedVR2...")
66
  ckpt_dir = Path('./ckpts')
67
  ckpt_dir.mkdir(exist_ok=True)
 
72
  'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
73
  'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt'
74
  }
75
+
76
+ _load_file_from_url(url=pretrain_model_url['dit'], model_dir='./ckpts/')
77
+ _load_file_from_url(url=pretrain_model_url['vae'], model_dir='./ckpts/')
78
+ _load_file_from_url(url=pretrain_model_url['pos_emb'])
79
+ _load_file_from_url(url=pretrain_model_url['neg_emb'])
 
 
 
 
 
 
 
 
 
 
80
  logger.info("Modelos do SeedVR2 baixados com sucesso.")
81
 
 
82
  def _initialize_runner(self):
83
  """Carrega e configura o modelo SeedVR sob demanda."""
84
  if self.runner is not None:
85
  return
86
 
87
+ self._setup_dependencies()
88
  self._download_models()
89
 
90
  logger.info("Inicializando o runner do SeedVR2...")
91
+ config_path = os.path.join('./configs_3b', 'main.yaml')
92
  config = load_config(config_path)
93
 
94
  self.runner = VideoDiffusionInfer(config)
 
114
  logger.info("Runner do SeedVR2 descarregado da VRAM.")
115
 
116
  def process_video(self, input_video_path: str, output_video_path: str, prompt: str, seed: int = 666, fps_out: int = 24) -> str:
117
+ """Aplica o aprimoramento HD a um vídeo usando a lógica oficial do SeedVR."""
 
 
118
  try:
119
  self._initialize_runner()
120
  set_seed(seed, same_across_ranks=True)
121
+ # ... (O resto da função process_video permanece exatamente o mesmo da resposta anterior) ...
122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  finally:
124
  self._unload_runner()
125