Spaces:
Runtime error
Runtime error
Update managers/audio_specialist.py
Browse files- managers/audio_specialist.py +104 -55
managers/audio_specialist.py
CHANGED
|
@@ -1,6 +1,13 @@
|
|
| 1 |
# audio_specialist.py
|
| 2 |
-
#
|
| 3 |
-
# Copyright (C) 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import logging
|
|
@@ -11,23 +18,20 @@ import yaml
|
|
| 11 |
import gc
|
| 12 |
from pathlib import Path
|
| 13 |
import gradio as gr
|
| 14 |
-
|
| 15 |
-
# Importa as classes e funções necessárias do MMAudio
|
| 16 |
-
try:
|
| 17 |
-
from mmaudio.eval_utils import ModelConfig, all_model_cfg, generate as mmaudio_generate, load_video, make_video
|
| 18 |
-
from mmaudio.model.flow_matching import FlowMatching
|
| 19 |
-
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 20 |
-
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 21 |
-
from mmaudio.model.sequence_config import SequenceConfig
|
| 22 |
-
except ImportError:
|
| 23 |
-
raise ImportError("MMAudio não foi encontrado. Por favor, instale-o a partir do GitHub: git+https://github.com/hkchengrex/MMAudio.git")
|
| 24 |
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
class AudioSpecialist:
|
| 28 |
"""
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
"""
|
| 32 |
def __init__(self, workspace_dir):
|
| 33 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -35,26 +39,84 @@ class AudioSpecialist:
|
|
| 35 |
self.dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
|
| 36 |
self.workspace_dir = workspace_dir
|
| 37 |
|
| 38 |
-
self.
|
| 39 |
-
self.
|
| 40 |
-
self.
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
self._load_models_to_cpu()
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
def _load_models_to_cpu(self):
|
| 46 |
-
"""
|
| 47 |
try:
|
| 48 |
-
|
|
|
|
| 49 |
self.model_config.download_if_needed()
|
| 50 |
|
| 51 |
self.seq_cfg = self.model_config.seq_cfg
|
| 52 |
|
| 53 |
-
logger.info(f"
|
| 54 |
self.net = get_my_mmaudio(self.model_config.model_name).eval()
|
| 55 |
self.net.load_weights(torch.load(self.model_config.model_path, map_location=self.cpu_device, weights_only=True))
|
| 56 |
|
| 57 |
-
logger.info("
|
| 58 |
self.feature_utils = FeaturesUtils(
|
| 59 |
tod_vae_ckpt=self.model_config.vae_path,
|
| 60 |
synchformer_ckpt=self.model_config.synchformer_ckpt,
|
|
@@ -66,22 +128,22 @@ class AudioSpecialist:
|
|
| 66 |
self.feature_utils = self.feature_utils.eval()
|
| 67 |
self.net.to(self.cpu_device)
|
| 68 |
self.feature_utils.to(self.cpu_device)
|
| 69 |
-
logger.info("
|
| 70 |
except Exception as e:
|
| 71 |
-
logger.error(f"
|
| 72 |
self.net = None
|
| 73 |
|
| 74 |
def to_gpu(self):
|
| 75 |
-
"""
|
| 76 |
if self.device == 'cpu': return
|
| 77 |
-
logger.info(f"
|
| 78 |
self.net.to(self.device, self.dtype)
|
| 79 |
self.feature_utils.to(self.device, self.dtype)
|
| 80 |
|
| 81 |
def to_cpu(self):
|
| 82 |
-
"""
|
| 83 |
if self.device == 'cpu': return
|
| 84 |
-
logger.info("
|
| 85 |
self.net.to(self.cpu_device)
|
| 86 |
self.feature_utils.to(self.cpu_device)
|
| 87 |
gc.collect()
|
|
@@ -89,35 +151,24 @@ class AudioSpecialist:
|
|
| 89 |
|
| 90 |
def generate_audio_for_video(self, video_path: str, prompt: str, duration_seconds: float, output_path_override: str = None) -> str:
|
| 91 |
"""
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
Args:
|
| 95 |
-
video_path (str): Caminho para o vídeo silencioso.
|
| 96 |
-
prompt (str): Descrição da cena para guiar a geração de SFX.
|
| 97 |
-
duration_seconds (float): Duração do áudio a ser gerado.
|
| 98 |
-
|
| 99 |
-
Returns:
|
| 100 |
-
str: Caminho para o novo arquivo de vídeo com áudio.
|
| 101 |
"""
|
| 102 |
if self.net is None:
|
| 103 |
-
raise gr.Error("
|
| 104 |
|
| 105 |
-
logger.info("
|
| 106 |
-
logger.info("---
|
| 107 |
-
logger.info(f"---
|
| 108 |
-
logger.info(f"--- Duração: {duration_seconds:.2f}s")
|
| 109 |
-
logger.info(f"--- Prompt (Descrição da Cena): '{prompt}'")
|
| 110 |
|
| 111 |
-
negative_prompt = "human voice"
|
| 112 |
-
logger.info(f"--- Negative Prompt: '{negative_prompt}'")
|
| 113 |
|
| 114 |
if duration_seconds < 1:
|
| 115 |
-
logger.warning("
|
| 116 |
-
logger.info("------------------------------------------------------")
|
| 117 |
return video_path
|
| 118 |
-
|
| 119 |
if self.device == 'cpu':
|
| 120 |
-
logger.warning("
|
| 121 |
|
| 122 |
try:
|
| 123 |
self.to_gpu()
|
|
@@ -142,12 +193,10 @@ class AudioSpecialist:
|
|
| 142 |
)
|
| 143 |
audio_waveform = audios.float().cpu()[0]
|
| 144 |
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
make_video(video_info, Path(output_video_path), audio_waveform, sampling_rate=self.seq_cfg.sampling_rate)
|
| 149 |
-
logger.info(f"---
|
| 150 |
-
logger.info("------------------------------------------------------")
|
| 151 |
return output_video_path
|
| 152 |
finally:
|
| 153 |
self.to_cpu()
|
|
@@ -159,5 +208,5 @@ try:
|
|
| 159 |
WORKSPACE_DIR = config['application']['workspace_dir']
|
| 160 |
audio_specialist_singleton = AudioSpecialist(workspace_dir=WORKSPACE_DIR)
|
| 161 |
except Exception as e:
|
| 162 |
-
logger.error(f"
|
| 163 |
audio_specialist_singleton = None
|
|
|
|
| 1 |
# audio_specialist.py
|
| 2 |
+
#
|
| 3 |
+
# Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos
|
| 4 |
+
#
|
| 5 |
+
# Version: 2.2.0
|
| 6 |
+
#
|
| 7 |
+
# This file defines the Audio Specialist for the ADUC-SDR framework. It is responsible
|
| 8 |
+
# for generating audio synchronized with video clips. This version has been refactored
|
| 9 |
+
# to be self-contained by automatically cloning the MMAudio dependency from its
|
| 10 |
+
# official repository, making the framework more portable and easier to set up.
|
| 11 |
|
| 12 |
import torch
|
| 13 |
import logging
|
|
|
|
| 18 |
import gc
|
| 19 |
from pathlib import Path
|
| 20 |
import gradio as gr
|
| 21 |
+
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
logger = logging.getLogger(__name__)
|
| 24 |
|
| 25 |
+
# --- Dependency Management ---
|
| 26 |
+
DEPS_DIR = Path("./deps")
|
| 27 |
+
MMAUDIO_REPO_DIR = DEPS_DIR / "MMAudio"
|
| 28 |
+
MMAUDIO_REPO_URL = "https://github.com/hkchengrex/MMAudio.git"
|
| 29 |
+
|
| 30 |
class AudioSpecialist:
|
| 31 |
"""
|
| 32 |
+
Specialist responsible for generating audio for video fragments.
|
| 33 |
+
Manages the loading and unloading of audio models from VRAM and handles
|
| 34 |
+
its own code dependencies by cloning the MMAudio repository.
|
| 35 |
"""
|
| 36 |
def __init__(self, workspace_dir):
|
| 37 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 39 |
self.dtype = torch.bfloat16 if self.device == "cuda" else torch.float32
|
| 40 |
self.workspace_dir = workspace_dir
|
| 41 |
|
| 42 |
+
self._mmaudio_modules_loaded = False
|
| 43 |
+
self._setup_dependencies()
|
| 44 |
+
self._lazy_load_mmaudio_modules()
|
| 45 |
+
|
| 46 |
+
self.model_config: 'ModelConfig' = self.all_model_cfg['large_44k_v2']
|
| 47 |
+
self.net: 'MMAudio' = None
|
| 48 |
+
self.feature_utils: 'FeaturesUtils' = None
|
| 49 |
+
self.seq_cfg: 'SequenceConfig' = None
|
| 50 |
|
| 51 |
self._load_models_to_cpu()
|
| 52 |
|
| 53 |
+
def _setup_dependencies(self):
|
| 54 |
+
"""
|
| 55 |
+
Checks for the MMAudio repository locally. If not found, clones it.
|
| 56 |
+
Then, it adds the repository to the Python path to make its modules importable.
|
| 57 |
+
"""
|
| 58 |
+
if not MMAUDIO_REPO_DIR.exists():
|
| 59 |
+
logger.info(f"MMAudio repository not found at '{MMAUDIO_REPO_DIR}'. Cloning from GitHub...")
|
| 60 |
+
try:
|
| 61 |
+
DEPS_DIR.mkdir(exist_ok=True)
|
| 62 |
+
subprocess.run(
|
| 63 |
+
["git", "clone", MMAUDIO_REPO_URL, str(MMAUDIO_REPO_DIR)],
|
| 64 |
+
check=True, capture_output=True, text=True
|
| 65 |
+
)
|
| 66 |
+
logger.info("MMAudio repository cloned successfully.")
|
| 67 |
+
except subprocess.CalledProcessError as e:
|
| 68 |
+
logger.error(f"Failed to clone MMAudio repository. Git stderr: {e.stderr}")
|
| 69 |
+
raise RuntimeError("Could not clone the required MMAudio dependency from GitHub.")
|
| 70 |
+
else:
|
| 71 |
+
logger.info("Found local MMAudio repository.")
|
| 72 |
+
|
| 73 |
+
if str(MMAUDIO_REPO_DIR.resolve()) not in sys.path:
|
| 74 |
+
sys.path.insert(0, str(MMAUDIO_REPO_DIR.resolve()))
|
| 75 |
+
logger.info(f"Added '{MMAUDIO_REPO_DIR.resolve()}' to sys.path.")
|
| 76 |
+
|
| 77 |
+
def _lazy_load_mmaudio_modules(self):
|
| 78 |
+
"""Dynamically imports MMAudio modules only when needed."""
|
| 79 |
+
if self._mmaudio_modules_loaded:
|
| 80 |
+
return
|
| 81 |
+
|
| 82 |
+
# These globals are now populated by the lazy loader
|
| 83 |
+
global ModelConfig, all_model_cfg, mmaudio_generate, load_video, make_video
|
| 84 |
+
global FlowMatching, MMAudio, get_my_mmaudio, FeaturesUtils, SequenceConfig
|
| 85 |
+
|
| 86 |
+
from mmaudio.eval_utils import ModelConfig, all_model_cfg, generate as mmaudio_generate, load_video, make_video
|
| 87 |
+
from mmaudio.model.flow_matching import FlowMatching
|
| 88 |
+
from mmaudio.model.networks import MMAudio, get_my_mmaudio
|
| 89 |
+
from mmaudio.model.utils.features_utils import FeaturesUtils
|
| 90 |
+
from mmaudio.model.sequence_config import SequenceConfig
|
| 91 |
+
|
| 92 |
+
self.all_model_cfg = all_model_cfg
|
| 93 |
+
self._mmaudio_modules_loaded = True
|
| 94 |
+
logger.info("MMAudio modules have been dynamically loaded.")
|
| 95 |
+
|
| 96 |
+
def _adjust_paths_for_repo(self):
|
| 97 |
+
"""Adjusts the checkpoint paths in the model config to point inside the cloned repo."""
|
| 98 |
+
for cfg_key in self.all_model_cfg:
|
| 99 |
+
cfg = self.all_model_cfg[cfg_key]
|
| 100 |
+
cfg.model_path = MMAUDIO_REPO_DIR / cfg.model_path
|
| 101 |
+
cfg.vae_path = MMAUDIO_REPO_DIR / cfg.vae_path
|
| 102 |
+
if cfg.bigvgan_16k_path is not None:
|
| 103 |
+
cfg.bigvgan_16k_path = MMAUDIO_REPO_DIR / cfg.bigvgan_16k_path
|
| 104 |
+
cfg.synchformer_ckpt = MMAUDIO_REPO_DIR / cfg.synchformer_ckpt
|
| 105 |
+
|
| 106 |
def _load_models_to_cpu(self):
|
| 107 |
+
"""Loads the MMAudio models to CPU memory on initialization."""
|
| 108 |
try:
|
| 109 |
+
self._adjust_paths_for_repo()
|
| 110 |
+
logger.info("Verifying and downloading MMAudio models, if necessary...")
|
| 111 |
self.model_config.download_if_needed()
|
| 112 |
|
| 113 |
self.seq_cfg = self.model_config.seq_cfg
|
| 114 |
|
| 115 |
+
logger.info(f"Loading MMAudio model: {self.model_config.model_name} to CPU...")
|
| 116 |
self.net = get_my_mmaudio(self.model_config.model_name).eval()
|
| 117 |
self.net.load_weights(torch.load(self.model_config.model_path, map_location=self.cpu_device, weights_only=True))
|
| 118 |
|
| 119 |
+
logger.info("Loading MMAudio feature utils to CPU...")
|
| 120 |
self.feature_utils = FeaturesUtils(
|
| 121 |
tod_vae_ckpt=self.model_config.vae_path,
|
| 122 |
synchformer_ckpt=self.model_config.synchformer_ckpt,
|
|
|
|
| 128 |
self.feature_utils = self.feature_utils.eval()
|
| 129 |
self.net.to(self.cpu_device)
|
| 130 |
self.feature_utils.to(self.cpu_device)
|
| 131 |
+
logger.info("Audio Specialist ready on CPU.")
|
| 132 |
except Exception as e:
|
| 133 |
+
logger.error(f"Failed to load audio models: {e}", exc_info=True)
|
| 134 |
self.net = None
|
| 135 |
|
| 136 |
def to_gpu(self):
|
| 137 |
+
"""Moves the models and utilities to the GPU before inference."""
|
| 138 |
if self.device == 'cpu': return
|
| 139 |
+
logger.info(f"Moving Audio Specialist to GPU ({self.device})...")
|
| 140 |
self.net.to(self.device, self.dtype)
|
| 141 |
self.feature_utils.to(self.device, self.dtype)
|
| 142 |
|
| 143 |
def to_cpu(self):
|
| 144 |
+
"""Moves the models back to CPU and clears VRAM after inference."""
|
| 145 |
if self.device == 'cpu': return
|
| 146 |
+
logger.info("Unloading Audio Specialist from GPU...")
|
| 147 |
self.net.to(self.cpu_device)
|
| 148 |
self.feature_utils.to(self.cpu_device)
|
| 149 |
gc.collect()
|
|
|
|
| 151 |
|
| 152 |
def generate_audio_for_video(self, video_path: str, prompt: str, duration_seconds: float, output_path_override: str = None) -> str:
|
| 153 |
"""
|
| 154 |
+
Generates audio for a video file, applying a negative prompt to avoid speech.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
"""
|
| 156 |
if self.net is None:
|
| 157 |
+
raise gr.Error("MMAudio model is not loaded. Cannot generate audio.")
|
| 158 |
|
| 159 |
+
logger.info("--- Generating Audio for Video Fragment ---")
|
| 160 |
+
logger.info(f"--- Video: {os.path.basename(video_path)}")
|
| 161 |
+
logger.info(f"--- Duration: {duration_seconds:.2f}s")
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
negative_prompt = "human voice, speech, talking, singing, narration"
|
| 164 |
+
logger.info(f"--- Prompt: '{prompt}' | Negative Prompt: '{negative_prompt}'")
|
| 165 |
|
| 166 |
if duration_seconds < 1:
|
| 167 |
+
logger.warning("Fragment too short (<1s). Returning original video.")
|
|
|
|
| 168 |
return video_path
|
| 169 |
+
|
| 170 |
if self.device == 'cpu':
|
| 171 |
+
logger.warning("Generating audio on CPU. This may be very slow.")
|
| 172 |
|
| 173 |
try:
|
| 174 |
self.to_gpu()
|
|
|
|
| 193 |
)
|
| 194 |
audio_waveform = audios.float().cpu()[0]
|
| 195 |
|
| 196 |
+
output_video_path = output_path_override if output_path_override else os.path.join(self.workspace_dir, f"{Path(video_path).stem}_with_audio.mp4")
|
| 197 |
+
|
|
|
|
| 198 |
make_video(video_info, Path(output_video_path), audio_waveform, sampling_rate=self.seq_cfg.sampling_rate)
|
| 199 |
+
logger.info(f"--- Fragment with audio saved to: {os.path.basename(output_video_path)}")
|
|
|
|
| 200 |
return output_video_path
|
| 201 |
finally:
|
| 202 |
self.to_cpu()
|
|
|
|
| 208 |
WORKSPACE_DIR = config['application']['workspace_dir']
|
| 209 |
audio_specialist_singleton = AudioSpecialist(workspace_dir=WORKSPACE_DIR)
|
| 210 |
except Exception as e:
|
| 211 |
+
logger.error(f"Could not initialize AudioSpecialist: {e}", exc_info=True)
|
| 212 |
audio_specialist_singleton = None
|