Spaces:
Runtime error
Runtime error
Update managers/seedvr_manager.py
Browse files- managers/seedvr_manager.py +18 -38
managers/seedvr_manager.py
CHANGED
|
@@ -31,7 +31,6 @@ import gradio as gr
|
|
| 31 |
import mediapy
|
| 32 |
from einops import rearrange
|
| 33 |
|
| 34 |
-
# Internalized utility for color correction, ensuring stability.
|
| 35 |
from tools.tensor_utils import wavelet_reconstruction
|
| 36 |
|
| 37 |
logger = logging.getLogger(__name__)
|
|
@@ -40,17 +39,16 @@ logger = logging.getLogger(__name__)
|
|
| 40 |
DEPS_DIR = Path("./deps")
|
| 41 |
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 42 |
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
|
|
|
| 43 |
|
| 44 |
def setup_seedvr_dependencies():
|
| 45 |
"""
|
| 46 |
Ensures the SeedVR repository is cloned and available in the sys.path.
|
| 47 |
-
This function is run once when the module is first imported.
|
| 48 |
"""
|
| 49 |
if not SEEDVR_REPO_DIR.exists():
|
| 50 |
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
|
| 51 |
try:
|
| 52 |
DEPS_DIR.mkdir(exist_ok=True)
|
| 53 |
-
# Use --depth 1 for a shallow clone to save space and time
|
| 54 |
subprocess.run(
|
| 55 |
["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
|
| 56 |
check=True, capture_output=True, text=True
|
|
@@ -62,15 +60,12 @@ def setup_seedvr_dependencies():
|
|
| 62 |
else:
|
| 63 |
logger.info("Found local SeedVR repository.")
|
| 64 |
|
| 65 |
-
# Add the cloned repo to Python's path to allow direct imports
|
| 66 |
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 67 |
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 68 |
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
|
| 69 |
|
| 70 |
-
# --- Execute dependency setup immediately upon module import ---
|
| 71 |
setup_seedvr_dependencies()
|
| 72 |
|
| 73 |
-
# --- Now that the path is set, we can safely import from the cloned repo ---
|
| 74 |
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
|
| 75 |
from common.config import load_config
|
| 76 |
from common.seed import set_seed
|
|
@@ -83,7 +78,6 @@ from omegaconf import OmegaConf
|
|
| 83 |
|
| 84 |
|
| 85 |
def _load_file_from_url(url, model_dir='./', file_name=None):
|
| 86 |
-
"""Helper function to download files from a URL to a local directory."""
|
| 87 |
os.makedirs(model_dir, exist_ok=True)
|
| 88 |
filename = file_name or os.path.basename(urlparse(url).path)
|
| 89 |
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
|
@@ -103,14 +97,18 @@ class SeedVrManager:
|
|
| 103 |
self.is_initialized = False
|
| 104 |
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
|
| 105 |
|
| 106 |
-
def
|
| 107 |
-
"""Downloads the necessary checkpoints
|
| 108 |
-
logger.info("Verifying and downloading SeedVR2 models...")
|
| 109 |
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
|
|
|
|
| 110 |
ckpt_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
pretrain_model_urls = {
|
| 113 |
-
'
|
| 114 |
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
|
| 115 |
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
|
| 116 |
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
|
|
@@ -120,14 +118,12 @@ class SeedVrManager:
|
|
| 120 |
for key, url in pretrain_model_urls.items():
|
| 121 |
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
|
| 122 |
|
| 123 |
-
logger.info("SeedVR2 models downloaded successfully.")
|
| 124 |
|
| 125 |
def _initialize_runner(self, model_version: str):
|
| 126 |
"""Loads and configures the SeedVR model on demand based on the selected version."""
|
| 127 |
if self.runner is not None: return
|
| 128 |
-
|
| 129 |
-
self._download_models()
|
| 130 |
-
|
| 131 |
logger.info(f"Initializing SeedVR2 {model_version} runner...")
|
| 132 |
if model_version == '3B':
|
| 133 |
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
|
|
@@ -139,11 +135,15 @@ class SeedVrManager:
|
|
| 139 |
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
|
| 140 |
|
| 141 |
config = load_config(str(config_path))
|
| 142 |
-
|
| 143 |
self.runner = VideoDiffusionInfer(config)
|
| 144 |
OmegaConf.set_readonly(self.runner.config, False)
|
| 145 |
-
|
| 146 |
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
self.runner.configure_vae_model()
|
| 148 |
|
| 149 |
if hasattr(self.runner.vae, "set_memory_limit"):
|
|
@@ -153,7 +153,6 @@ class SeedVrManager:
|
|
| 153 |
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
|
| 154 |
|
| 155 |
def _unload_runner(self):
|
| 156 |
-
"""Removes the runner from VRAM to free resources."""
|
| 157 |
if self.runner is not None:
|
| 158 |
del self.runner; self.runner = None
|
| 159 |
gc.collect(); torch.cuda.empty_cache()
|
|
@@ -163,17 +162,13 @@ class SeedVrManager:
|
|
| 163 |
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
|
| 164 |
model_version: str = '3B', steps: int = 50, seed: int = 666,
|
| 165 |
progress: gr.Progress = None) -> str:
|
| 166 |
-
"""Applies HD enhancement to a video using the SeedVR logic."""
|
| 167 |
try:
|
| 168 |
self._initialize_runner(model_version)
|
| 169 |
set_seed(seed, same_across_ranks=True)
|
| 170 |
-
|
| 171 |
self.runner.config.diffusion.timesteps.sampling.steps = steps
|
| 172 |
self.runner.configure_diffusion()
|
| 173 |
-
|
| 174 |
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
|
| 175 |
res_h, res_w = video_tensor.shape[-2:]
|
| 176 |
-
|
| 177 |
video_transform = Compose([
|
| 178 |
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
|
| 179 |
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
|
|
@@ -181,48 +176,33 @@ class SeedVrManager:
|
|
| 181 |
Normalize(0.5, 0.5),
|
| 182 |
Rearrange("t c h w -> c t h w"),
|
| 183 |
])
|
| 184 |
-
|
| 185 |
cond_latents = [video_transform(video_tensor.to(self.device))]
|
| 186 |
input_videos = cond_latents
|
| 187 |
-
|
| 188 |
self.runner.dit.to("cpu")
|
| 189 |
self.runner.vae.to(self.device)
|
| 190 |
cond_latents = self.runner.vae_encode(cond_latents)
|
| 191 |
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 192 |
self.runner.dit.to(self.device)
|
| 193 |
-
|
| 194 |
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
|
| 195 |
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
|
| 196 |
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
|
| 197 |
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
|
| 198 |
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
|
| 199 |
-
|
| 200 |
noises = [torch.randn_like(latent) for latent in cond_latents]
|
| 201 |
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
|
| 202 |
-
|
| 203 |
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
|
| 204 |
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
|
| 205 |
-
|
| 206 |
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 207 |
-
|
| 208 |
self.runner.vae.to(self.device)
|
| 209 |
samples = self.runner.vae_decode(video_tensors)
|
| 210 |
-
|
| 211 |
final_sample = samples[0]
|
| 212 |
input_video_sample = input_videos[0]
|
| 213 |
-
|
| 214 |
if final_sample.shape[1] < input_video_sample.shape[1]:
|
| 215 |
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
|
| 216 |
-
|
| 217 |
-
final_sample = wavelet_reconstruction(
|
| 218 |
-
rearrange(final_sample, "c t h w -> t c h w"),
|
| 219 |
-
rearrange(input_video_sample, "c t h w -> t c h w")
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
final_sample = rearrange(final_sample, "t c h w -> t h w c")
|
| 223 |
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 224 |
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
| 225 |
-
|
| 226 |
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 227 |
logger.info(f"HD Mastered video saved to: {output_video_path}")
|
| 228 |
return output_video_path
|
|
|
|
| 31 |
import mediapy
|
| 32 |
from einops import rearrange
|
| 33 |
|
|
|
|
| 34 |
from tools.tensor_utils import wavelet_reconstruction
|
| 35 |
|
| 36 |
logger = logging.getLogger(__name__)
|
|
|
|
| 39 |
DEPS_DIR = Path("./deps")
|
| 40 |
SEEDVR_REPO_DIR = DEPS_DIR / "SeedVR"
|
| 41 |
SEEDVR_REPO_URL = "https://github.com/ByteDance-Seed/SeedVR.git"
|
| 42 |
+
VAE_CONFIG_URL = "https://raw.githubusercontent.com/ByteDance-Seed/SeedVR/main/models/video_vae_v3/s8_c16_t4_inflation_sd3.yaml"
|
| 43 |
|
| 44 |
def setup_seedvr_dependencies():
|
| 45 |
"""
|
| 46 |
Ensures the SeedVR repository is cloned and available in the sys.path.
|
|
|
|
| 47 |
"""
|
| 48 |
if not SEEDVR_REPO_DIR.exists():
|
| 49 |
logger.info(f"SeedVR repository not found at '{SEEDVR_REPO_DIR}'. Cloning from GitHub...")
|
| 50 |
try:
|
| 51 |
DEPS_DIR.mkdir(exist_ok=True)
|
|
|
|
| 52 |
subprocess.run(
|
| 53 |
["git", "clone", "--depth", "1", SEEDVR_REPO_URL, str(SEEDVR_REPO_DIR)],
|
| 54 |
check=True, capture_output=True, text=True
|
|
|
|
| 60 |
else:
|
| 61 |
logger.info("Found local SeedVR repository.")
|
| 62 |
|
|
|
|
| 63 |
if str(SEEDVR_REPO_DIR.resolve()) not in sys.path:
|
| 64 |
sys.path.insert(0, str(SEEDVR_REPO_DIR.resolve()))
|
| 65 |
logger.info(f"Added '{SEEDVR_REPO_DIR.resolve()}' to sys.path.")
|
| 66 |
|
|
|
|
| 67 |
setup_seedvr_dependencies()
|
| 68 |
|
|
|
|
| 69 |
from projects.video_diffusion_sr.infer import VideoDiffusionInfer
|
| 70 |
from common.config import load_config
|
| 71 |
from common.seed import set_seed
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
def _load_file_from_url(url, model_dir='./', file_name=None):
|
|
|
|
| 81 |
os.makedirs(model_dir, exist_ok=True)
|
| 82 |
filename = file_name or os.path.basename(urlparse(url).path)
|
| 83 |
cached_file = os.path.abspath(os.path.join(model_dir, filename))
|
|
|
|
| 97 |
self.is_initialized = False
|
| 98 |
logger.info("SeedVrManager initialized. Model will be loaded on demand.")
|
| 99 |
|
| 100 |
+
def _download_models_and_configs(self):
|
| 101 |
+
"""Downloads the necessary checkpoints AND the missing VAE config file."""
|
| 102 |
+
logger.info("Verifying and downloading SeedVR2 models and configs...")
|
| 103 |
ckpt_dir = SEEDVR_REPO_DIR / 'ckpts'
|
| 104 |
+
config_dir = SEEDVR_REPO_DIR / 'configs' / 'vae'
|
| 105 |
ckpt_dir.mkdir(exist_ok=True)
|
| 106 |
+
config_dir.mkdir(parents=True, exist_ok=True)
|
| 107 |
+
|
| 108 |
+
_load_file_from_url(url=VAE_CONFIG_URL, model_dir=str(config_dir))
|
| 109 |
|
| 110 |
pretrain_model_urls = {
|
| 111 |
+
'vae_ckpt': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
|
| 112 |
'dit_3b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
|
| 113 |
'dit_7b': 'https://huggingface.co/ByteDance-Seed/SeedVR2-7B/resolve/main/seedvr2_ema_7b.pth',
|
| 114 |
'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
|
|
|
|
| 118 |
for key, url in pretrain_model_urls.items():
|
| 119 |
_load_file_from_url(url=url, model_dir=str(ckpt_dir))
|
| 120 |
|
| 121 |
+
logger.info("SeedVR2 models and configs downloaded successfully.")
|
| 122 |
|
| 123 |
def _initialize_runner(self, model_version: str):
|
| 124 |
"""Loads and configures the SeedVR model on demand based on the selected version."""
|
| 125 |
if self.runner is not None: return
|
| 126 |
+
self._download_models_and_configs()
|
|
|
|
|
|
|
| 127 |
logger.info(f"Initializing SeedVR2 {model_version} runner...")
|
| 128 |
if model_version == '3B':
|
| 129 |
config_path = SEEDVR_REPO_DIR / 'configs_3b' / 'main.yaml'
|
|
|
|
| 135 |
raise ValueError(f"Unsupported SeedVR model version: {model_version}")
|
| 136 |
|
| 137 |
config = load_config(str(config_path))
|
|
|
|
| 138 |
self.runner = VideoDiffusionInfer(config)
|
| 139 |
OmegaConf.set_readonly(self.runner.config, False)
|
|
|
|
| 140 |
self.runner.configure_dit_model(device=self.device, checkpoint=str(checkpoint_path))
|
| 141 |
+
|
| 142 |
+
# --- PATH CORRECTION ---
|
| 143 |
+
correct_vae_config_path = SEEDVR_REPO_DIR / 'configs' / 'vae' / 's8_c16_t4_inflation_sd3.yaml'
|
| 144 |
+
logger.info(f"Correcting VAE config path to: {correct_vae_config_path}")
|
| 145 |
+
self.runner.config.vae.config = str(correct_vae_config_path)
|
| 146 |
+
|
| 147 |
self.runner.configure_vae_model()
|
| 148 |
|
| 149 |
if hasattr(self.runner.vae, "set_memory_limit"):
|
|
|
|
| 153 |
logger.info(f"Runner for SeedVR2 {model_version} initialized and ready.")
|
| 154 |
|
| 155 |
def _unload_runner(self):
|
|
|
|
| 156 |
if self.runner is not None:
|
| 157 |
del self.runner; self.runner = None
|
| 158 |
gc.collect(); torch.cuda.empty_cache()
|
|
|
|
| 162 |
def process_video(self, input_video_path: str, output_video_path: str, prompt: str,
|
| 163 |
model_version: str = '3B', steps: int = 50, seed: int = 666,
|
| 164 |
progress: gr.Progress = None) -> str:
|
|
|
|
| 165 |
try:
|
| 166 |
self._initialize_runner(model_version)
|
| 167 |
set_seed(seed, same_across_ranks=True)
|
|
|
|
| 168 |
self.runner.config.diffusion.timesteps.sampling.steps = steps
|
| 169 |
self.runner.configure_diffusion()
|
|
|
|
| 170 |
video_tensor = read_video(input_video_path, output_format="TCHW")[0] / 255.0
|
| 171 |
res_h, res_w = video_tensor.shape[-2:]
|
|
|
|
| 172 |
video_transform = Compose([
|
| 173 |
NaResize(resolution=(res_h * res_w) ** 0.5, mode="area", downsample_only=False),
|
| 174 |
Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
|
|
|
|
| 176 |
Normalize(0.5, 0.5),
|
| 177 |
Rearrange("t c h w -> c t h w"),
|
| 178 |
])
|
|
|
|
| 179 |
cond_latents = [video_transform(video_tensor.to(self.device))]
|
| 180 |
input_videos = cond_latents
|
|
|
|
| 181 |
self.runner.dit.to("cpu")
|
| 182 |
self.runner.vae.to(self.device)
|
| 183 |
cond_latents = self.runner.vae_encode(cond_latents)
|
| 184 |
self.runner.vae.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
| 185 |
self.runner.dit.to(self.device)
|
|
|
|
| 186 |
pos_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'pos_emb.pt'
|
| 187 |
neg_emb_path = SEEDVR_REPO_DIR / 'ckpts' / 'neg_emb.pt'
|
| 188 |
text_pos_embeds = torch.load(pos_emb_path).to(self.device)
|
| 189 |
text_neg_embeds = torch.load(neg_emb_path).to(self.device)
|
| 190 |
text_embeds_dict = {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
|
|
|
|
| 191 |
noises = [torch.randn_like(latent) for latent in cond_latents]
|
| 192 |
conditions = [self.runner.get_condition(noise, latent_blur=latent, task="sr") for noise, latent in zip(noises, cond_latents)]
|
|
|
|
| 193 |
with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
|
| 194 |
video_tensors = self.runner.inference(noises=noises, conditions=conditions, dit_offload=True, **text_embeds_dict)
|
|
|
|
| 195 |
self.runner.dit.to("cpu"); gc.collect(); torch.cuda.empty_cache()
|
|
|
|
| 196 |
self.runner.vae.to(self.device)
|
| 197 |
samples = self.runner.vae_decode(video_tensors)
|
|
|
|
| 198 |
final_sample = samples[0]
|
| 199 |
input_video_sample = input_videos[0]
|
|
|
|
| 200 |
if final_sample.shape[1] < input_video_sample.shape[1]:
|
| 201 |
input_video_sample = input_video_sample[:, :final_sample.shape[1]]
|
| 202 |
+
final_sample = wavelet_reconstruction(rearrange(final_sample, "c t h w -> t c h w"), rearrange(input_video_sample, "c t h w -> t c h w"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
final_sample = rearrange(final_sample, "t c h w -> t h w c")
|
| 204 |
final_sample = final_sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
|
| 205 |
final_sample_np = final_sample.to(torch.uint8).cpu().numpy()
|
|
|
|
| 206 |
mediapy.write_video(output_video_path, final_sample_np, fps=24)
|
| 207 |
logger.info(f"HD Mastered video saved to: {output_video_path}")
|
| 208 |
return output_video_path
|