# engineers/deformes4D_engine.py # # Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos # # Version: 2.1.0 # # This file contains the Deformes4D Engine, which acts as the primary "Editor" or # "Film Crew" specialist within the ADUC-SDR architecture. It has been refactored # to delegate all VAE operations to the dedicated VaeManager, cleaning up its own # logic and adhering to the specialist-based architecture. import os import time import imageio import numpy as np import torch import logging from PIL import Image, ImageOps from dataclasses import dataclass import gradio as gr import subprocess import gc import shutil from pathlib import Path from typing import List, Tuple, Generator, Dict, Any, Optional from managers.ltx_manager import ltx_manager_singleton from managers.latent_enhancer_manager import latent_enhancer_specialist_singleton from managers.vae_manager import vae_manager_singleton from managers.gemini_manager import gemini_singleton from managers.hd_specialist import hd_specialist_singleton from managers.audio_specialist import audio_specialist_singleton from tools.video_encode_tool import video_encode_tool_singleton logger = logging.getLogger(__name__) @dataclass class LatentConditioningItem: """Represents a conditioning anchor in the latent space for the Camera (Ψ).""" latent_tensor: torch.Tensor media_frame_number: int conditioning_strength: float class Deformes4DEngine: """ Implements the Camera (Ψ) and Distiller (Δ) of the ADUC-SDR architecture. Orchestrates the generation, latent post-production, and final rendering of video fragments. """ def __init__(self, workspace_dir="deformes_workspace"): self.workspace_dir = workspace_dir self.device = 'cuda' if torch.cuda.is_available() else 'cpu' logger.info("Deformes4D Specialist (ADUC-SDR Executor) initialized.") os.makedirs(self.workspace_dir, exist_ok=True) # --- HELPER METHODS --- def save_video_from_tensor(self, video_tensor: torch.Tensor, path: str, fps: int = 24): """Saves a pixel-space tensor as an MP4 video file.""" if video_tensor is None or video_tensor.ndim != 5 or video_tensor.shape[2] == 0: return video_tensor = video_tensor.squeeze(0).permute(1, 2, 3, 0) video_tensor = (video_tensor.clamp(-1, 1) + 1) / 2.0 video_np = (video_tensor.detach().cpu().float().numpy() * 255).astype(np.uint8) with imageio.get_writer(path, fps=fps, codec='libx264', quality=8, output_params=['-pix_fmt', 'yuv420p']) as writer: for frame in video_np: writer.append_data(frame) def _preprocess_image_for_latent_conversion(self, image: Image.Image, target_resolution: tuple) -> Image.Image: """Resizes and fits an image to the target resolution for VAE encoding.""" if image.size != target_resolution: return ImageOps.fit(image, target_resolution, Image.Resampling.LANCZOS) return image def pil_to_latent(self, pil_image: Image.Image) -> torch.Tensor: """Converts a PIL Image to a latent tensor by calling the VaeManager.""" image_np = np.array(pil_image).astype(np.float32) / 255.0 tensor = torch.from_numpy(image_np).permute(2, 0, 1).unsqueeze(0).unsqueeze(2) tensor = (tensor * 2.0) - 1.0 return vae_manager_singleton.encode(tensor) # --- CORE ADUC-SDR LOGIC --- def generate_original_movie(self, keyframes: list, global_prompt: str, storyboard: list, seconds_per_fragment: float, trim_percent: int, handler_strength: float, destination_convergence_strength: float, video_resolution: int, use_continuity_director: bool, guidance_scale: float, stg_scale: float, num_inference_steps: int, progress: gr.Progress = gr.Progress()): """ Step 3: Production. Generates the original master video from keyframes. """ FPS = 24 FRAMES_PER_LATENT_CHUNK = 8 LATENT_PROCESSING_CHUNK_SIZE = 4 run_timestamp = int(time.time()) temp_latent_dir = os.path.join(self.workspace_dir, f"temp_latents_{run_timestamp}") temp_video_clips_dir = os.path.join(self.workspace_dir, f"temp_clips_{run_timestamp}") os.makedirs(temp_latent_dir, exist_ok=True) os.makedirs(temp_video_clips_dir, exist_ok=True) total_frames_brutos = self._quantize_to_multiple(int(seconds_per_fragment * FPS), FRAMES_PER_LATENT_CHUNK) frames_a_podar = self._quantize_to_multiple(int(total_frames_brutos * (trim_percent / 100)), FRAMES_PER_LATENT_CHUNK) latents_a_podar = frames_a_podar // FRAMES_PER_LATENT_CHUNK DEJAVU_FRAME_TARGET = frames_a_podar - 1 if frames_a_podar > 0 else 0 DESTINATION_FRAME_TARGET = total_frames_brutos - 1 base_ltx_params = {"guidance_scale": guidance_scale, "stg_scale": stg_scale, "num_inference_steps": num_inference_steps, "rescaling_scale": 0.15, "image_cond_noise_scale": 0.00} keyframe_paths = [item[0] if isinstance(item, tuple) else item for item in keyframes] story_history = "" target_resolution_tuple = (video_resolution, video_resolution) eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None latent_fragment_paths = [] if len(keyframe_paths) < 2: raise gr.Error(f"Generation requires at least 2 keyframes. You provided {len(keyframe_paths)}.") num_transitions_to_generate = len(keyframe_paths) - 1 logger.info("--- STARTING STAGE 1: Latent Fragment Generation ---") for i in range(num_transitions_to_generate): fragment_index = i + 1 progress(i / num_transitions_to_generate, desc=f"Generating Latent {fragment_index}/{num_transitions_to_generate}") past_keyframe_path = keyframe_paths[i - 1] if i > 0 else keyframe_paths[i] start_keyframe_path = keyframe_paths[i] destination_keyframe_path = keyframe_paths[i + 1] future_story_prompt = storyboard[i + 1] if (i + 1) < len(storyboard) else "The final scene." logger.info(f"Calling Gemini to generate cinematic decision for fragment {fragment_index}...") decision = gemini_singleton.get_cinematic_decision(global_prompt, story_history, past_keyframe_path, start_keyframe_path, destination_keyframe_path, storyboard[i - 1] if i > 0 else "The beginning.", storyboard[i], future_story_prompt) transition_type, motion_prompt = decision["transition_type"], decision["motion_prompt"] story_history += f"\n- Act {fragment_index}: {motion_prompt}" conditioning_items = [] if eco_latent_for_next_loop is None: img_start = self._preprocess_image_for_latent_conversion(Image.open(start_keyframe_path).convert("RGB"), target_resolution_tuple) conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_start), 0, 1.0)) else: conditioning_items.append(LatentConditioningItem(eco_latent_for_next_loop, 0, 1.0)) conditioning_items.append(LatentConditioningItem(dejavu_latent_for_next_loop, DEJAVU_FRAME_TARGET, handler_strength)) img_dest = self._preprocess_image_for_latent_conversion(Image.open(destination_keyframe_path).convert("RGB"), target_resolution_tuple) conditioning_items.append(LatentConditioningItem(self.pil_to_latent(img_dest), DESTINATION_FRAME_TARGET, destination_convergence_strength)) current_ltx_params = {**base_ltx_params, "motion_prompt": motion_prompt} logger.info(f"Calling LTX to generate video latents for fragment {fragment_index} ({total_frames_brutos} frames)...") latents_brutos, _ = self._generate_latent_tensor_internal(conditioning_items, current_ltx_params, target_resolution_tuple, total_frames_brutos) num_latent_frames = latents_brutos.shape[2] logger.info(f"LTX responded with a latent tensor of shape {latents_brutos.shape}, representing ~{num_latent_frames * 8 + 1} video frames at {FPS} FPS.") last_trim = latents_brutos[:, :, -(latents_a_podar+1):, :, :].clone() eco_latent_for_next_loop = last_trim[:, :, :2, :, :].clone() dejavu_latent_for_next_loop = last_trim[:, :, -1:, :, :].clone() latents_video = latents_brutos[:, :, :-(latents_a_podar-1), :, :].clone() latents_video = latents_video[:, :, 1:, :, :] del last_trim, latents_brutos; gc.collect(); torch.cuda.empty_cache() if transition_type == "cut": eco_latent_for_next_loop, dejavu_latent_for_next_loop = None, None cpu_latent = latents_video.cpu() latent_path = os.path.join(temp_latent_dir, f"latent_fragment_{i:04d}.pt") torch.save(cpu_latent, latent_path) latent_fragment_paths.append(latent_path) del latents_video, cpu_latent; gc.collect() del eco_latent_for_next_loop, dejavu_latent_for_next_loop; gc.collect(); torch.cuda.empty_cache() logger.info(f"--- STARTING STAGE 2: Processing {len(latent_fragment_paths)} latents in chunks of {LATENT_PROCESSING_CHUNK_SIZE} ---") final_video_clip_paths = [] num_chunks = -(-len(latent_fragment_paths) // LATENT_PROCESSING_CHUNK_SIZE) for i in range(num_chunks): chunk_start_index = i * LATENT_PROCESSING_CHUNK_SIZE chunk_end_index = chunk_start_index + LATENT_PROCESSING_CHUNK_SIZE chunk_paths = latent_fragment_paths[chunk_start_index:chunk_end_index] progress(i / num_chunks, desc=f"Processing & Decoding Batch {i+1}/{num_chunks}") tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths] tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)] sub_group_latent = torch.cat(tensors_para_concatenar, dim=2) del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache() logger.info(f"Batch {i+1} concatenated. Latent shape: {sub_group_latent.shape}") base_name = f"clip_{i:04d}_{run_timestamp}" current_clip_path = os.path.join(temp_video_clips_dir, f"{base_name}.mp4") pixel_tensor = vae_manager_singleton.decode(sub_group_latent) self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=FPS) del pixel_tensor, sub_group_latent; gc.collect(); torch.cuda.empty_cache() final_video_clip_paths.append(current_clip_path) progress(0.98, desc="Final assembly of clips...") final_video_path = os.path.join(self.workspace_dir, f"original_movie_{run_timestamp}.mp4") video_encode_tool_singleton.concatenate_videos(video_paths=final_video_clip_paths, output_path=final_video_path, workspace_dir=self.workspace_dir) logger.info("Cleaning up temporary clip files...") try: shutil.rmtree(temp_video_clips_dir) except OSError as e: logger.warning(f"Could not remove temporary clip directory: {e}") logger.info(f"Process complete! Original video saved to: {final_video_path}") return {"final_path": final_video_path, "latent_paths": latent_fragment_paths} def upscale_latents_and_create_video(self, latent_paths: list, chunk_size: int, progress: gr.Progress): if not latent_paths: raise gr.Error("Cannot perform upscaling: no latent paths were provided.") logger.info("--- STARTING POST-PRODUCTION: Latent Upscaling ---") run_timestamp = int(time.time()) temp_upscaled_clips_dir = os.path.join(self.workspace_dir, f"temp_upscaled_clips_{run_timestamp}") os.makedirs(temp_upscaled_clips_dir, exist_ok=True) final_upscaled_clip_paths = [] num_chunks = -(-len(latent_paths) // chunk_size) for i in range(num_chunks): chunk_start_index = i * chunk_size chunk_end_index = chunk_start_index + chunk_size chunk_paths = latent_paths[chunk_start_index:chunk_end_index] progress(i / num_chunks, desc=f"Upscaling & Decoding Batch {i+1}/{num_chunks}") tensors_in_chunk = [torch.load(p, map_location=self.device) for p in chunk_paths] tensors_para_concatenar = [frag[:, :, :-1, :, :] if j < len(tensors_in_chunk) - 1 else frag for j, frag in enumerate(tensors_in_chunk)] sub_group_latent = torch.cat(tensors_para_concatenar, dim=2) del tensors_in_chunk, tensors_para_concatenar; gc.collect(); torch.cuda.empty_cache() logger.info(f"Batch {i+1} loaded. Original latent shape: {sub_group_latent.shape}") upscaled_latent_chunk = latent_enhancer_specialist_singleton.upscale(sub_group_latent) del sub_group_latent; gc.collect(); torch.cuda.empty_cache() logger.info(f"Batch {i+1} upscaled. New latent shape: {upscaled_latent_chunk.shape}") pixel_tensor = vae_manager_singleton.decode(upscaled_latent_chunk) del upscaled_latent_chunk; gc.collect(); torch.cuda.empty_cache() base_name = f"upscaled_clip_{i:04d}_{run_timestamp}" current_clip_path = os.path.join(temp_upscaled_clips_dir, f"{base_name}.mp4") self.save_video_from_tensor(pixel_tensor, current_clip_path, fps=24) final_upscaled_clip_paths.append(current_clip_path) del pixel_tensor; gc.collect(); torch.cuda.empty_cache() logger.info(f"Saved upscaled clip: {Path(current_clip_path).name}") progress(0.98, desc="Assembling upscaled clips...") final_video_path = os.path.join(self.workspace_dir, f"upscaled_movie_{run_timestamp}.mp4") video_encode_tool_singleton.concatenate_videos(video_paths=final_upscaled_clip_paths, output_path=final_video_path, workspace_dir=self.workspace_dir) logger.info("Cleaning up temporary upscaled clip files...") try: shutil.rmtree(temp_upscaled_clips_dir) except OSError as e: logger.warning(f"Could not remove temporary upscaled clip directory: {e}") logger.info(f"Latent upscaling complete! Final video at: {final_video_path}") yield {"final_path": final_video_path} def master_video_hd(self, source_video_path: str, model_version: str, steps: int, prompt: str, progress: gr.Progress): logger.info(f"--- STARTING POST-PRODUCTION: HD Mastering with SeedVR {model_version} ---") progress(0.1, desc=f"Preparing for HD Mastering with SeedVR {model_version}...") run_timestamp = int(time.time()) output_path = os.path.join(self.workspace_dir, f"hd_mastered_movie_{model_version}_{run_timestamp}.mp4") try: final_path = hd_specialist_singleton.process_video( input_video_path=source_video_path, output_video_path=output_path, prompt=prompt, model_version=model_version, steps=steps, progress=progress ) logger.info(f"HD Mastering complete! Final video at: {final_path}") yield {"final_path": final_path} except Exception as e: logger.error(f"HD Mastering failed: {e}", exc_info=True) raise gr.Error(f"HD Mastering failed. Details: {e}") def generate_audio_for_final_video(self, source_video_path: str, audio_prompt: str, progress: gr.Progress): logger.info(f"--- STARTING POST-PRODUCTION: Audio Generation ---") progress(0.1, desc="Preparing for audio generation...") run_timestamp = int(time.time()) source_name = Path(source_video_path).stem output_path = os.path.join(self.workspace_dir, f"{source_name}_with_audio_{run_timestamp}.mp4") try: result = subprocess.run( ["ffprobe", "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", source_video_path], capture_output=True, text=True, check=True) duration = float(result.stdout.strip()) logger.info(f"Source video duration: {duration:.2f} seconds.") progress(0.5, desc="Generating audio track...") final_path = audio_specialist_singleton.generate_audio_for_video( video_path=source_video_path, prompt=audio_prompt, duration_seconds=duration, output_path_override=output_path ) logger.info(f"Audio generation complete! Final video with audio at: {final_path}") progress(1.0, desc="Audio generation complete!") yield {"final_path": final_path} except Exception as e: logger.error(f"Audio generation failed: {e}", exc_info=True) raise gr.Error(f"Audio generation failed. Details: {e}") def _generate_latent_tensor_internal(self, conditioning_items, ltx_params, target_resolution, total_frames_to_generate): """Internal helper to call the LTX manager.""" final_ltx_params = {**ltx_params, 'width': target_resolution[0], 'height': target_resolution[1], 'video_total_frames': total_frames_to_generate, 'video_fps': 24, 'current_fragment_index': int(time.time()), 'conditioning_items_data': conditioning_items} return self.ltx_manager_singleton.generate_latent_fragment(**final_ltx_params) def _quantize_to_multiple(self, n, m): """Helper to round n to the nearest multiple of m.""" if m == 0: return n quantized = int(round(n / m) * m) return m if n > 0 and quantized == 0 else quantized