# app.py # # Copyright (C) August 4, 2025 Carlos Rodrigues dos Santos # # Version: 2.0.0 # # Contact: # Carlos Rodrigues dos Santos # carlex22@gmail.com # # Related Repositories and Projects: # GitHub: https://github.com/carlex22/Aduc-sdr # YouTube (Results): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . # # PENDING PATENT NOTICE: The ADUC method and system implemented in this # software is in the process of being patented. Please see NOTICE.md for details. """ This file serves as the main entry point for the ADUC-SDR Gradio user interface. It orchestrates the multi-step workflow for AI-driven film creation, from pre-production (storyboarding, keyframing) to production (original video rendering) and post-production (upscaling, HD mastering, audio generation). The UI is structured using Accordion blocks to guide the user through a logical sequence of operations, while `gr.State` components manage the flow of data (file paths of generated artifacts) between these independent steps. """ import gradio as gr import yaml import logging import os import sys import shutil import time import json from aduc_orchestrator import AducOrchestrator # --- 1. CONFIGURATION AND INITIALIZATION --- # This section sets up logging, loads internationalization strings, and initializes # the core AducOrchestrator which manages all AI specialist models. LOG_FILE_PATH = "aduc_log.txt" if os.path.exists(LOG_FILE_PATH): os.remove(LOG_FILE_PATH) log_format = '%(asctime)s - %(levelname)s - [%(name)s:%(funcName)s] - %(message)s' root_logger = logging.getLogger() root_logger.setLevel(logging.INFO) root_logger.handlers.clear() stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setLevel(logging.INFO) stream_handler.setFormatter(logging.Formatter(log_format)) root_logger.addHandler(stream_handler) file_handler = logging.FileHandler(LOG_FILE_PATH, mode='w', encoding='utf-8') file_handler.setLevel(logging.INFO) file_handler.setFormatter(logging.Formatter(log_format)) root_logger.addHandler(file_handler) logger = logging.getLogger(__name__) # Load translation strings for the UI i18n = {} try: with open("i18n.json", "r", encoding="utf-8") as f: i18n = json.load(f) except Exception as e: logger.error(f"Error loading i18n.json: {e}") i18n = {"πŸ‡§πŸ‡·": {}, "πŸ‡ΊπŸ‡Έ": {}, "πŸ‡¨πŸ‡³": {}} # Fallback for missing languages if 'πŸ‡§πŸ‡·' not in i18n: i18n['πŸ‡§πŸ‡·'] = i18n.get('πŸ‡ΊπŸ‡Έ', {}) if 'πŸ‡ΊπŸ‡Έ' not in i18n: i18n['πŸ‡ΊπŸ‡Έ'] = {} if 'πŸ‡¨πŸ‡³' not in i18n: i18n['πŸ‡¨πŸ‡³'] = i18n.get('πŸ‡ΊπŸ‡Έ', {}) # Initialize the main orchestrator from the configuration file try: with open("config.yaml", 'r') as f: config = yaml.safe_load(f) WORKSPACE_DIR = config['application']['workspace_dir'] aduc = AducOrchestrator(workspace_dir=WORKSPACE_DIR) logger.info("ADUC Orchestrator and Specialists initialized successfully.") except Exception as e: logger.error(f"CRITICAL ERROR during initialization: {e}", exc_info=True) exit() # --- 2. UI WRAPPER FUNCTIONS --- # These functions act as intermediaries between the Gradio UI components and the # AducOrchestrator. They handle input validation, progress tracking, and updating # the UI state after each operation. def run_pre_production_wrapper(prompt, num_keyframes, ref_files, resolution_str, duration_per_fragment, progress=gr.Progress()): """ Wrapper for Pre-Production (Steps 1 & 2): Generates storyboard and keyframes. This corresponds to the "Art Director Mode". """ if not ref_files: raise gr.Error("Please provide at least one reference image.") ref_paths = [aduc.process_image_for_story(f.name, 480, f"ref_processed_{i}.png") for i, f in enumerate(ref_files)] progress(0.1, desc="Generating storyboard...") storyboard, initial_ref_path, _ = aduc.task_generate_storyboard(prompt, num_keyframes, ref_paths, progress) resolution = int(resolution_str.split('x')[0]) # Callback factory to create progress updates for keyframe generation def cb_factory(scene_index, total_scenes): start_time = time.time() total_steps = 12 # Standard steps for Flux model def callback(pipe_self, step, timestep, callback_kwargs): elapsed = time.time() - start_time current_step = step + 1 if current_step > 0: it_per_sec = current_step / elapsed eta = (total_steps - current_step) / it_per_sec if it_per_sec > 0 else 0 desc = f"Keyframe {scene_index}/{total_scenes}: {int((current_step/total_steps)*100)}% | {current_step}/{total_steps} [{elapsed:.0f}s<{eta:.0f}s, {it_per_sec:.2f}it/s]" base_progress = 0.2 + (scene_index - 1) * (0.8 / total_scenes) step_progress = (current_step / total_steps) * (0.8 / total_scenes) progress(base_progress + step_progress, desc=desc) return {} return callback final_keyframes = aduc.task_generate_keyframes(storyboard, initial_ref_path, prompt, resolution, cb_factory) # Make the next step (Production) visible return gr.update(value=storyboard), gr.update(value=final_keyframes), gr.update(visible=True, open=True) def run_pre_production_photo_wrapper(prompt, num_keyframes, ref_files, progress=gr.Progress()): """ Wrapper for Pre-Production (Steps 1 & 2) in "Photographer Mode". Generates a storyboard and selects the best matching keyframes from a user-provided pool. """ if not ref_files or len(ref_files) < 2: raise gr.Error("Photographer Mode requires at least 2 images: one base and one for the scene pool.") base_ref_paths = [aduc.process_image_for_story(ref_files[0].name, 480, "base_ref_processed_0.png")] pool_ref_paths = [aduc.process_image_for_story(f.name, 480, f"pool_ref_{i+1}.png") for i, f in enumerate(ref_files[1:])] progress(0.1, desc="Generating storyboard...") storyboard, _, _ = aduc.task_generate_storyboard(prompt, num_keyframes, base_ref_paths, progress) progress(0.5, desc="AI Photographer is selecting the best scenes...") selected_keyframes = aduc.task_select_keyframes(storyboard, base_ref_paths, pool_ref_paths) return gr.update(value=storyboard), gr.update(value=selected_keyframes), gr.update(visible=True, open=True) def run_original_production_wrapper(keyframes, prompt, duration, trim_percent, handler_strength, destination_convergence_strength, guidance_scale, stg_scale, inference_steps, video_resolution, progress=gr.Progress()): """ Wrapper for Step 3: Production. Generates the original master video using LTX. Yields UI updates to show progress and final output. """ yield { original_video_output: gr.update(value=None, visible=True, label="🎬 Producing your original master video... Please wait."), final_video_output: gr.update(value=None, visible=True, label="🎬 Production in progress..."), step4_accordion: gr.update(visible=False) # Hide post-production until this is done } resolution = int(video_resolution.split('x')[0]) # The orchestrator now returns the paths to the generated artifacts result = aduc.task_produce_original_movie( keyframes, prompt, duration, int(trim_percent), handler_strength, destination_convergence_strength, guidance_scale, stg_scale, int(inference_steps), resolution, use_continuity_director=True, progress=progress ) original_latents = result["latent_paths"] original_video = result["final_path"] yield { original_video_output: gr.update(value=original_video, label="βœ… Original Master Video"), final_video_output: gr.update(value=original_video, label="Final Film (Result of the Last Step)"), step4_accordion: gr.update(visible=True, open=True), # Show post-production tools # Update state for the next steps original_latents_paths_state: original_latents, original_video_path_state: original_video, current_source_video_state: original_video, } def run_upscaler_wrapper(latent_paths, chunk_size, progress=gr.Progress()): """ Wrapper for Post-Production Step 4A: Latent Upscaler. """ if not latent_paths: raise gr.Error("Cannot run Upscaler. No original latents found. Please complete Step 3 first.") yield { upscaler_video_output: gr.update(value=None, visible=True, label="Upscaling latents and decoding video..."), final_video_output: gr.update(label="Post-Production in progress: Latent Upscaling...") } upscaled_video_path = aduc.task_run_latent_upscaler( latent_paths, int(chunk_size), progress=progress ) yield { upscaler_video_output: gr.update(value=upscaled_video_path, label="βœ… Latent Upscale Complete"), final_video_output: gr.update(value=upscaled_video_path), # Update states for subsequent steps upscaled_video_path_state: upscaled_video_path, current_source_video_state: upscaled_video_path, } def run_hd_wrapper(source_video, model_version, steps, progress=gr.Progress()): """ Wrapper for Post-Production Step 4B: HD Mastering. """ if not source_video: raise gr.Error("Cannot run HD Mastering. No source video found. Please complete a previous step first.") yield { hd_video_output: gr.update(value=None, visible=True, label="Applying HD mastering... This may take a while."), final_video_output: gr.update(label="Post-Production in progress: HD Mastering...") } hd_video_path = aduc.task_run_hd_mastering( source_video, model_version, int(steps), progress=progress ) yield { hd_video_output: gr.update(value=hd_video_path, label="βœ… HD Mastering Complete"), final_video_output: gr.update(value=hd_video_path), hd_video_path_state: hd_video_path, current_source_video_state: hd_video_path, } def run_audio_wrapper(source_video, audio_prompt, global_prompt, progress=gr.Progress()): """ Wrapper for Post-Production Step 4C: Audio Generation. """ if not source_video: raise gr.Error("Cannot run Audio Generation. No source video found. Please complete a previous step first.") yield { audio_video_output: gr.update(value=None, visible=True, label="Generating audio and muxing..."), final_video_output: gr.update(label="Post-Production in progress: Audio Generation...") } # Use the specific audio prompt if provided, otherwise fall back to the global prompt final_audio_prompt = audio_prompt if audio_prompt and audio_prompt.strip() else global_prompt video_with_audio_path = aduc.task_run_audio_generation( source_video, final_audio_prompt, progress=progress ) yield { audio_video_output: gr.update(value=video_with_audio_path, label="βœ… Audio Generation Complete"), final_video_output: gr.update(value=video_with_audio_path), } def get_log_content(): """ Reads and returns the content of the log file for display in the UI. """ try: with open(LOG_FILE_PATH, "r", encoding="utf-8") as f: return f.read() except FileNotFoundError: return "Log file not yet created. Start a generation." def update_ui_language(lang_code): """ Updates all text components in the UI to the selected language. It fetches the translation map from the `i18n` dictionary. """ lang_map = i18n.get(lang_code, i18n.get('en', {})) # This dictionary maps each UI component variable to its new value from the language map. return { # General title_md: gr.update(value=f"# {lang_map.get('app_title')}"), subtitle_md: gr.update(value=lang_map.get('app_subtitle')), lang_selector: gr.update(label=lang_map.get('lang_selector_label')), # Step 1: Pre-Production step1_accordion: gr.update(label=lang_map.get('step1_accordion')), prompt_input: gr.update(label=lang_map.get('prompt_label')), ref_image_input: gr.update(label=lang_map.get('ref_images_label')), num_keyframes_slider: gr.update(label=lang_map.get('keyframes_label')), duration_per_fragment_slider: gr.update(label=lang_map.get('duration_label'), info=lang_map.get('duration_info')), storyboard_and_keyframes_button: gr.update(value=lang_map.get('storyboard_and_keyframes_button')), storyboard_from_photos_button: gr.update(value=lang_map.get('storyboard_from_photos_button')), step1_mode_b_info_md: gr.update(value=f"*{lang_map.get('step1_mode_b_info')}*"), storyboard_output: gr.update(label=lang_map.get('storyboard_output_label')), keyframe_gallery: gr.update(label=lang_map.get('keyframes_gallery_label')), # Step 3: Production step3_accordion: gr.update(label=lang_map.get('step3_accordion')), step3_description_md: gr.update(value=lang_map.get('step3_description')), produce_original_button: gr.update(value=lang_map.get('produce_original_button')), causality_accordion: gr.update(label=lang_map.get('causality_controls_title')), trim_percent_slider: gr.update(label=lang_map.get('trim_percent_label'), info=lang_map.get('trim_percent_info')), forca_guia_slider: gr.update(label=lang_map.get('forca_guia_label'), info=lang_map.get('forca_guia_info')), convergencia_destino_slider: gr.update(label=lang_map.get('convergencia_final_label'), info=lang_map.get('convergencia_final_info')), ltx_pipeline_accordion: gr.update(label=lang_map.get('ltx_pipeline_options')), guidance_scale_slider: gr.update(label=lang_map.get('guidance_scale_label'), info=lang_map.get('guidance_scale_info')), stg_scale_slider: gr.update(label=lang_map.get('stg_scale_label'), info=lang_map.get('stg_scale_info')), inference_steps_slider: gr.update(label=lang_map.get('steps_label'), info=lang_map.get('steps_info')), # Step 4: Post-Production step4_accordion: gr.update(label=lang_map.get('step4_accordion')), step4_description_md: gr.update(value=lang_map.get('step4_description')), sub_step_a_accordion: gr.update(label=lang_map.get('sub_step_a_upscaler')), upscaler_description_md: gr.update(value=lang_map.get('upscaler_description')), upscaler_options_accordion: gr.update(label=lang_map.get('upscaler_options')), upscaler_chunk_size_slider: gr.update(label=lang_map.get('upscaler_chunk_size_label'), info=lang_map.get('upscaler_chunk_size_info')), run_upscaler_button: gr.update(value=lang_map.get('run_upscaler_button')), sub_step_b_accordion: gr.update(label=lang_map.get('sub_step_b_hd')), hd_description_md: gr.update(value=lang_map.get('hd_description')), hd_options_accordion: gr.update(label=lang_map.get('hd_options')), hd_model_radio: gr.update(label=lang_map.get('hd_model_label')), hd_steps_slider: gr.update(label=lang_map.get('hd_steps_label'), info=lang_map.get('hd_steps_info')), run_hd_button: gr.update(value=lang_map.get('run_hd_button')), sub_step_c_accordion: gr.update(label=lang_map.get('sub_step_c_audio')), audio_description_md: gr.update(value=lang_map.get('audio_description')), audio_options_accordion: gr.update(label=lang_map.get('audio_options')), audio_prompt_input: gr.update(label=lang_map.get('audio_prompt_label'), info=lang_map.get('audio_prompt_info')), run_audio_button: gr.update(value=lang_map.get('run_audio_button')), # Final Outputs & Logs final_video_output: gr.update(label=lang_map.get('final_video_label')), log_accordion: gr.update(label=lang_map.get('log_accordion_label')), log_display: gr.update(label=lang_map.get('log_display_label')), update_log_button: gr.update(value=lang_map.get('update_log_button')), } # --- 3. GRADIO UI DEFINITION --- with gr.Blocks(theme=gr.themes.Soft()) as demo: # Initialize UI with default language (Portuguese) default_lang = i18n.get('pt', {}) # State components to manage the pipeline artifacts original_latents_paths_state = gr.State(value=None) original_video_path_state = gr.State(value=None) upscaled_video_path_state = gr.State(value=None) hd_video_path_state = gr.State(value=None) current_source_video_state = gr.State(value=None) # Tracks the latest video for post-production steps # --- UI Header --- title_md = gr.Markdown(f"# {default_lang.get('app_title')}") subtitle_md = gr.Markdown(default_lang.get('app_subtitle')) with gr.Row(): lang_selector = gr.Radio(["πŸ‡§πŸ‡·", "πŸ‡ΊπŸ‡Έ", "πŸ‡¨πŸ‡³"], value="pt", label=default_lang.get('lang_selector_label')) resolution_selector = gr.Radio(["480x480", "720x720", "960x960"], value="480x480", label="Base Resolution") # --- Step 1 & 2: Pre-Production --- with gr.Accordion(default_lang.get('step1_accordion'), open=True) as step1_accordion: prompt_input = gr.Textbox(label=default_lang.get('prompt_label'), value="A majestic lion walks across the savanna, sits down, and then roars at the setting sun.") ref_image_input = gr.File(label=default_lang.get('ref_images_label'), file_count="multiple", file_types=["image"]) with gr.Row(): num_keyframes_slider = gr.Slider(minimum=3, maximum=42, value=5, step=1, label=default_lang.get('keyframes_label')) duration_per_fragment_slider = gr.Slider(label=default_lang.get('duration_label'), info=default_lang.get('duration_info'), minimum=2.0, maximum=10.0, value=4.0, step=0.1) with gr.Row(): storyboard_and_keyframes_button = gr.Button(default_lang.get('storyboard_and_keyframes_button'), variant="primary") storyboard_from_photos_button = gr.Button(default_lang.get('storyboard_from_photos_button')) step1_mode_b_info_md = gr.Markdown(f"*{default_lang.get('step1_mode_b_info')}*") storyboard_output = gr.JSON(label=default_lang.get('storyboard_output_label')) keyframe_gallery = gr.Gallery(label=default_lang.get('keyframes_gallery_label'), visible=True, object_fit="contain", height="auto", type="filepath") # --- Step 3: Production --- with gr.Accordion(default_lang.get('step3_accordion'), open=False, visible=False) as step3_accordion: step3_description_md = gr.Markdown(default_lang.get('step3_description')) with gr.Accordion(default_lang.get('ltx_advanced_options'), open=False) as ltx_advanced_options_accordion: with gr.Accordion(default_lang.get('causality_controls_title'), open=True) as causality_accordion: trim_percent_slider = gr.Slider(minimum=10, maximum=90, value=50, step=5, label=default_lang.get('trim_percent_label'), info=default_lang.get('trim_percent_info')) with gr.Row(): forca_guia_slider = gr.Slider(label=default_lang.get('forca_guia_label'), minimum=0.0, maximum=1.0, value=0.5, step=0.05, info=default_lang.get('forca_guia_info')) convergencia_destino_slider = gr.Slider(label=default_lang.get('convergencia_final_label'), minimum=0.0, maximum=1.0, value=0.75, step=0.05, info=default_lang.get('convergencia_final_info')) with gr.Accordion(default_lang.get('ltx_pipeline_options'), open=True) as ltx_pipeline_accordion: with gr.Row(): guidance_scale_slider = gr.Slider(minimum=1.0, maximum=10.0, value=2.0, step=0.1, label=default_lang.get('guidance_scale_label'), info=default_lang.get('guidance_scale_info')) stg_scale_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.025, step=0.005, label=default_lang.get('stg_scale_label'), info=default_lang.get('stg_scale_info')) inference_steps_slider = gr.Slider(minimum=10, maximum=50, value=20, step=1, label=default_lang.get('steps_label'), info=default_lang.get('steps_info')) produce_original_button = gr.Button(default_lang.get('produce_original_button'), variant="primary") original_video_output = gr.Video(label="Original Master Video", visible=False) # --- Step 4: Post-Production --- with gr.Accordion(default_lang.get('step4_accordion'), open=False, visible=False) as step4_accordion: step4_description_md = gr.Markdown(default_lang.get('step4_description')) # Sub-Step 4A: Latent Upscaler with gr.Accordion(default_lang.get('sub_step_a_upscaler'), open=True) as sub_step_a_accordion: upscaler_description_md = gr.Markdown(default_lang.get('upscaler_description')) with gr.Accordion(default_lang.get('upscaler_options'), open=False) as upscaler_options_accordion: upscaler_chunk_size_slider = gr.Slider(minimum=1, maximum=10, value=4, step=1, label=default_lang.get('upscaler_chunk_size_label'), info=default_lang.get('upscaler_chunk_size_info')) run_upscaler_button = gr.Button(default_lang.get('run_upscaler_button'), variant="secondary") upscaler_video_output = gr.Video(label="Upscaled Video", visible=False) # Sub-Step 4B: HD Mastering with gr.Accordion(default_lang.get('sub_step_b_hd'), open=True) as sub_step_b_accordion: hd_description_md = gr.Markdown(default_lang.get('hd_description')) with gr.Accordion(default_lang.get('hd_options'), open=False) as hd_options_accordion: hd_model_radio = gr.Radio(["3B", "7B"], value="3B", label=default_lang.get('hd_model_label')) hd_steps_slider = gr.Slider(minimum=20, maximum=150, value=50, step=5, label=default_lang.get('hd_steps_label'), info=default_lang.get('hd_steps_info')) run_hd_button = gr.Button(default_lang.get('run_hd_button'), variant="secondary") hd_video_output = gr.Video(label="HD Mastered Video", visible=False) # Sub-Step 4C: Audio Generation with gr.Accordion(default_lang.get('sub_step_c_audio'), open=True) as sub_step_c_accordion: audio_description_md = gr.Markdown(default_lang.get('audio_description')) with gr.Accordion(default_lang.get('audio_options'), open=False) as audio_options_accordion: audio_prompt_input = gr.Textbox(label=default_lang.get('audio_prompt_label'), info=default_lang.get('audio_prompt_info'), lines=3) run_audio_button = gr.Button(default_lang.get('run_audio_button'), variant="secondary") audio_video_output = gr.Video(label="Video with Audio", visible=False) # --- Final Output & Logs --- final_video_output = gr.Video(label=default_lang.get('final_video_label'), visible=False) with gr.Accordion(default_lang.get('log_accordion_label'), open=False) as log_accordion: log_display = gr.Textbox(label=default_lang.get('log_display_label'), lines=20, interactive=False, autoscroll=True) update_log_button = gr.Button(default_lang.get('update_log_button')) # --- 4. UI EVENT CONNECTIONS --- # Collect all UI components that need language updates all_ui_components = list(update_ui_language('pt').keys()) lang_selector.change(fn=update_ui_language, inputs=lang_selector, outputs=all_ui_components) # Pre-Production Button Clicks storyboard_and_keyframes_button.click( fn=run_pre_production_wrapper, inputs=[prompt_input, num_keyframes_slider, ref_image_input, resolution_selector, duration_per_fragment_slider], outputs=[storyboard_output, keyframe_gallery, step3_accordion] ) storyboard_from_photos_button.click( fn=run_pre_production_photo_wrapper, inputs=[prompt_input, num_keyframes_slider, ref_image_input], outputs=[storyboard_output, keyframe_gallery, step3_accordion] ) # Production Button Click produce_original_button.click( fn=run_original_production_wrapper, inputs=[ keyframe_gallery, prompt_input, duration_per_fragment_slider, trim_percent_slider, forca_guia_slider, convergencia_destino_slider, guidance_scale_slider, stg_scale_slider, inference_steps_slider, resolution_selector ], outputs=[ original_video_output, final_video_output, step4_accordion, original_latents_paths_state, original_video_path_state, current_source_video_state ] ) # Post-Production Button Clicks run_upscaler_button.click( fn=run_upscaler_wrapper, inputs=[original_latents_paths_state, upscaler_chunk_size_slider], outputs=[ upscaler_video_output, final_video_output, upscaled_video_path_state, current_source_video_state ] ) run_hd_button.click( fn=run_hd_wrapper, inputs=[current_source_video_state, hd_model_radio, hd_steps_slider], outputs=[ hd_video_output, final_video_output, hd_video_path_state, current_source_video_state ] ) run_audio_button.click( fn=run_audio_wrapper, inputs=[current_source_video_state, audio_prompt_input, prompt_input], outputs=[audio_video_output, final_video_output] ) # Log Button Click update_log_button.click(fn=get_log_content, inputs=[], outputs=[log_display]) # --- 5. APPLICATION LAUNCH --- if __name__ == "__main__": if os.path.exists(WORKSPACE_DIR): logger.info(f"Clearing previous workspace at: {WORKSPACE_DIR}") shutil.rmtree(WORKSPACE_DIR) os.makedirs(WORKSPACE_DIR) logger.info(f"Application started. Launching Gradio interface...") demo.queue().launch()