File size: 21,888 Bytes
00613e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

"""Inference-only Deepseek-OCR model compatible with HuggingFace weights."""
import math
from collections.abc import Iterable, Mapping, Sequence
from typing import List, Literal, Optional, Set, Tuple, TypedDict, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import BatchFeature

from vllm.config import VllmConfig
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
                                    MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
                                   ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
                                        BaseProcessingInfo, PromptReplacement,
                                        PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
                                                          MlpProjectorConfig,
                                                          VisionEncoderConfig)
from process.image_process import (
    DeepseekOCRProcessor, count_tiles)
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
# from vllm.utils import is_list_of

from vllm.model_executor.models.interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from vllm.model_executor.models.utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
                    init_vllm_registered_model, maybe_prefix,
                    merge_multimodal_embeddings)

from deepencoder.sam_vary_sdpa import build_sam_vit_b
from deepencoder.clip_sdpa import build_clip_l
from deepencoder.build_linear import MlpProjector
from addict import Dict
# import time
from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, PRINT_NUM_VIS_TOKENS, PROMPT
# The image token id may be various
_IMAGE_TOKEN = "<image>"


class DeepseekOCRProcessingInfo(BaseProcessingInfo):

    def get_hf_config(self):
        return self.ctx.get_hf_config(DeepseekVLV2Config)

    def get_hf_processor(self, **kwargs: object):
        return self.ctx.get_hf_processor(DeepseekOCRProcessor, **kwargs)

    def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
        return {"image": None}

    def get_num_image_tokens(self,
                             *,
                             image_width: int,
                             image_height: int,
                             cropping: bool = True) -> int:
        hf_processor = self.get_hf_processor()


        # image_size = hf_processor.image_size
        # patch_size = hf_processor.patch_size
        # downsample_ratio = hf_processor.downsample_ratio

        image_size = IMAGE_SIZE
        base_size = BASE_SIZE
        patch_size = 16
        downsample_ratio = 4

        if CROP_MODE:
            if image_width <= 640 and image_height <= 640:
                crop_ratio = [1, 1]
            else:
                # images_crop_raw, crop_ratio = hf_processor.dynamic_preprocess(image)

                # find the closest aspect ratio to the target
                crop_ratio = count_tiles(image_width, image_height, image_size=IMAGE_SIZE)

                # print('===========')
                # print('crop_ratio ', crop_ratio)
                # print('============')
                
            num_width_tiles, num_height_tiles = crop_ratio
        else:
            num_width_tiles = num_height_tiles = 1

        h = w = math.ceil((base_size // patch_size) / downsample_ratio)

        h2 = w2 = math.ceil((image_size // patch_size) / downsample_ratio)

        global_views_tokens = h * (w + 1)
        if num_width_tiles >1 or num_height_tiles>1:
            local_views_tokens = (num_height_tiles * h2) * (num_width_tiles * w2 + 1)
        else:
            local_views_tokens = 0


        return global_views_tokens + local_views_tokens + 1

    def get_image_size_with_most_features(self) -> ImageSize:

        if IMAGE_SIZE == 1024 and BASE_SIZE == 1280:
            return ImageSize(width=1024*2, height=1024*2)
        return ImageSize(width=640*2, height=640*2)


class DeepseekOCRDummyInputsBuilder(
        BaseDummyInputsBuilder[DeepseekOCRProcessingInfo]):

    def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
        num_images = mm_counts.get("image", 0)

        processor = self.info.get_hf_processor()
        image_token = processor.image_token

        return image_token * num_images

    def get_dummy_mm_data(
        self,
        seq_len: int,
        mm_counts: Mapping[str, int],
    ) -> MultiModalDataDict:
        num_images = mm_counts.get("image", 0)

        max_image_size = self.info.get_image_size_with_most_features()

        if '<image>' in PROMPT:
            return {
                "image":
                DeepseekOCRProcessor().tokenize_with_images(images = self._get_dummy_images(width=max_image_size.width,
                                    height=max_image_size.height,
                                    num_images=num_images), bos=True, eos=True, cropping=CROP_MODE)
            }
        else:
            return {
                "image": []
            }




class DeepseekOCRMultiModalProcessor(
        BaseMultiModalProcessor[DeepseekOCRProcessingInfo]):
    

    def _call_hf_processor(
        self,
        prompt: str,
        mm_data: Mapping[str, object],
        mm_kwargs: Mapping[str, object],
    ) -> BatchFeature:
        
        
        # print(mm_data)
        if mm_data:
            processed_outputs = self.info.ctx.call_hf_processor(
                self.info.get_hf_processor(**mm_kwargs),
                dict(prompt=prompt, **mm_data),
                mm_kwargs,
            )

        else:
            tokenizer = self.info.get_tokenizer()
            processed_outputs = tokenizer(prompt,
                                          add_special_tokens=True,
                                          return_tensors="pt")

        return processed_outputs

    def _get_mm_fields_config(
        self,
        hf_inputs: BatchFeature,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> Mapping[str, MultiModalFieldConfig]:
        return dict(
            pixel_values=MultiModalFieldConfig.batched("image"),
            images_spatial_crop=MultiModalFieldConfig.batched("image"),
            # image_embeds=MultiModalFieldConfig.batched("image2"),
            images_crop=MultiModalFieldConfig.batched("image"),
        )

    def _get_prompt_updates(
        self,
        mm_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
        out_mm_kwargs: MultiModalKwargs,
    ) -> Sequence[PromptUpdate]:
        hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)

        image_token_id = hf_processor.image_token_id
        assert isinstance(image_token_id, int)

        def get_replacement_deepseek_vl2(item_idx: int):
            images = mm_items.get_items(
                "image", (ImageEmbeddingItems, ImageProcessorItems))



            if isinstance(images, ImageEmbeddingItems):
                num_image_tokens = images.get_feature_size(item_idx)
            else:

                
                width = images[0][-1][0][0]
                height = images[0][-1][0][1]

                num_image_tokens = self.info.get_num_image_tokens(
                    image_width=width,
                    image_height=height,
                    # flag = True,
                    cropping=CROP_MODE,
                )
            return [image_token_id] * num_image_tokens

        return [
            PromptReplacement(
                modality="image",
                target=[image_token_id],
                replacement=get_replacement_deepseek_vl2,
            )
        ]

    def _cached_apply_hf_processor(
        self,
        prompt: Union[str, list[int]],
        mm_data_items: MultiModalDataItems,
        hf_processor_mm_kwargs: Mapping[str, object],
    ) -> tuple[list[int], MultiModalKwargs, bool]:
        # The processor logic is different for len(images) <= 2 vs > 2
        # Since the processing cache assumes that the processor output is
        # invariant of how many images are passed per prompt, we only
        # perform caching for the most common case
        if mm_data_items.get_count("image", strict=False) > 2:
            # This code path corresponds to the cache being disabled
            return self._apply_hf_processor_main(
                prompt=prompt,
                mm_items=mm_data_items,
                hf_processor_mm_kwargs=hf_processor_mm_kwargs,
                enable_hf_prompt_update=True,
            )

        return super()._cached_apply_hf_processor(
            prompt=prompt,
            mm_data_items=mm_data_items,
            hf_processor_mm_kwargs=hf_processor_mm_kwargs,
        )


@MULTIMODAL_REGISTRY.register_processor(
    DeepseekOCRMultiModalProcessor,
    info=DeepseekOCRProcessingInfo,
    dummy_inputs=DeepseekOCRDummyInputsBuilder)
class DeepseekOCRForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):

    hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
        "language.": "language_model.",
    })

    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config: DeepseekVLV2Config = vllm_config.model_config.hf_config
        quant_config = vllm_config.quant_config
        multimodal_config = vllm_config.model_config.multimodal_config

        # config.model_type ='deepseek_vl_v2'

        self.config = config
        self.multimodal_config = multimodal_config


        self.vision_config = config.vision_config
        self.projector_config = config.projector_config
        self.text_config = config.text_config

        model_config = vllm_config.model_config
        tokenizer = cached_tokenizer_from_config(model_config)
        self.image_token_id = tokenizer.vocab[_IMAGE_TOKEN]

        self.sam_model = build_sam_vit_b()
        self.vision_model = build_clip_l()

        n_embed = 1280
        self.projector =  MlpProjector(Dict(projector_type="linear", input_dim=2048, n_embed=n_embed))
        self.tile_tag = config.tile_tag
        self.global_view_pos = config.global_view_pos
    
        # self.sam_model = torch.compile(self.sam_model, mode="reduce-overhead")
        # self.vision_model = torch.compile(self.vision_model, mode="reduce-overhead")
        # self.projector = torch.compile(self.projector, mode="max-autotune")




        # special token for image token sequence format
        embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
        if self.tile_tag == "2D":
            # <|view_separator|>, <|\n|>
            self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
            self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
        else:
            raise ValueError(
                f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
            )

        if self.text_config.topk_method == "noaux_tc":
            architectures = ["DeepseekV3ForCausalLM"]
        elif not self.text_config.use_mla:
            architectures = ["DeepseekForCausalLM"]
        else:
            architectures = ["DeepseekV2ForCausalLM"]

        self.language_model = init_vllm_registered_model(
            vllm_config=vllm_config,
            hf_config=self.text_config,
            prefix=maybe_prefix(prefix, "language"),
            architectures=architectures,
        )

        self.make_empty_intermediate_tensors = (
            self.language_model.make_empty_intermediate_tensors)



    def _parse_and_validate_image_input(
            self, **kwargs: object):
        
        pixel_values = kwargs.pop("pixel_values", None)
        images_spatial_crop = kwargs.pop("images_spatial_crop", None)
        images_crop = kwargs.pop("images_crop", None)


        if pixel_values is None or torch.sum(pixel_values).item() == 0:
            return None

        if pixel_values is not None:
            if not isinstance(pixel_values, (torch.Tensor, list)):
                raise ValueError("Incorrect type of pixel values. "
                                 f"Got type: {type(pixel_values)}")

            if not isinstance(images_spatial_crop, (torch.Tensor, list)):
                raise ValueError("Incorrect type of image sizes. "
                                 f"Got type: {type(images_spatial_crop)}")
            
            if not isinstance(images_crop, (torch.Tensor, list)):
                raise ValueError("Incorrect type of image crop. "
                                 f"Got type: {type(images_crop)}")

            return [pixel_values, images_crop, images_spatial_crop]


        raise AssertionError("This line should be unreachable.")
    


    def _pixel_values_to_embedding(
        self,
        pixel_values: torch.Tensor,
        images_crop: torch.Tensor,
        images_spatial_crop: torch.Tensor,
    ) -> NestedTensors:

        # Pixel_values (global view): [n_image, batch_size, 3, height, width]
        # images_spatial_crop: [n_image, batch_size, [num_tiles_w, num_tiles_h]]
        # images_crop (local view): [n_image, batch_size, num_pathes, 3, h, w]
        # split the pixel and image_crop, all batch_size = 1

        images_in_this_batch = []


        # print(type(images_crop))

        # print(pixel_values.shape)


        with torch.no_grad():
            for jdx in range(images_spatial_crop.size(0)):
                # with torch.set_grad_enabled(False):
                patches = images_crop[jdx][0].to(torch.bfloat16) # batch_size = 1
                image_ori = pixel_values[jdx]
                crop_shape = images_spatial_crop[jdx][0]

                if torch.sum(patches).item() != 0:  # if all values = 0, no crop
                    # P, C, H, W = patches.shape
                    # crop_flag = 1
                    local_features_1 = self.sam_model(patches)
                    #TODO del patches 
                    # torch.compiler.cudagraph_mark_step_begin()
                    local_features_2 = self.vision_model(patches, local_features_1)  


                    local_features = torch.cat((local_features_2[:, 1:], local_features_1.flatten(2).permute(0, 2, 1)), dim=-1) 
                    local_features = self.projector(local_features)


                    global_features_1 = self.sam_model(image_ori)
                    global_features_2 = self.vision_model(image_ori, global_features_1) 
                    global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1) 
                    global_features = self.projector(global_features)

                    if PRINT_NUM_VIS_TOKENS:
                        print('=====================')
                        print('BASE: ', global_features.shape)
                        print('PATCHES: ', local_features.shape)
                        print('=====================')

                    _, hw, n_dim = global_features.shape
                    h = w = int(hw ** 0.5)

                    _2, hw2, n_dim2 = local_features.shape
                    h2 = w2 = int(hw2 ** 0.5)

                    width_crop_num, height_crop_num = crop_shape[0], crop_shape[1]

                    global_features = global_features.view(h, w, n_dim)

                    global_features = torch.cat(
                        [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
                    )

                    global_features = global_features.view(-1, n_dim)


                    local_features = local_features.view(height_crop_num, width_crop_num, h2, w2, n_dim2).permute(0, 2, 1, 3, 4).reshape(height_crop_num*h2, width_crop_num*w2, n_dim2)
                    local_features = torch.cat(
                        [local_features, self.image_newline[None, None, :].expand(height_crop_num * h2, 1, n_dim2)], dim=1
                    )
                    local_features = local_features.view(-1, n_dim2)

                    global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
                
                else:
                    global_features_1 = self.sam_model(image_ori)
                    global_features_2 = self.vision_model(image_ori, global_features_1) 
                    global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1) 
                    global_features = self.projector(global_features)

                    if PRINT_NUM_VIS_TOKENS:
                        print('=====================')
                        print('BASE: ', global_features.shape)
                        print('NO PATCHES')
                        print('=====================')

                    _, hw, n_dim = global_features.shape
                    h = w = int(hw ** 0.5)

                    global_features = global_features.view(h, w, n_dim)

                    global_features = torch.cat(
                        [global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
                    )

                    global_features = global_features.view(-1, n_dim)

                    global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)

                images_in_this_batch.append(global_local_features)

        return images_in_this_batch

    def _process_image_input(
            self, image_input) -> torch.Tensor:
        

        # image_input: [pixel_values, images_crop, images_spatial_crop]
    
        pixel_values = image_input[0].to(torch.bfloat16)
        # print(image_input[1][0].shape)
        # print(type(image_input[1]))
        # exit()

        # images_crop = image_input[1].to(torch.bfloat16)
        images_crop = image_input[1]
        # images_crop = image_input[1]
        images_spatial_crop = image_input[2].to(dtype=torch.long)

        # local_start = time.time()
        vision_features = self._pixel_values_to_embedding(
            pixel_values=pixel_values, images_crop = images_crop,  images_spatial_crop=images_spatial_crop)

        # local_total_time = time.time() - local_start

        # print('encoder_time: ', local_total_time)
        # exit()
        return vision_features

    def get_language_model(self) -> torch.nn.Module:
        return self.language_model

    def get_multimodal_embeddings(
            self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
        image_input = self._parse_and_validate_image_input(**kwargs)
        if image_input is None:
            return None
        vision_embeddings = self._process_image_input(image_input)
        return vision_embeddings
    


    def get_input_embeddings(
        self,
        input_ids: torch.Tensor,
        multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
    ) -> torch.Tensor:
        


        inputs_embeds = self.language_model.get_input_embeddings(input_ids)


        if multimodal_embeddings is not None:
            inputs_embeds = merge_multimodal_embeddings(
                input_ids, inputs_embeds, multimodal_embeddings,
                self.image_token_id)
            # print(len(multimodal_embeddings))
            # print(input_ids.shape)
            # print(type(inputs_embeds))
            # print(inputs_embeds.shape)
            
        return inputs_embeds

    def forward(self,
                input_ids: torch.Tensor,
                positions: torch.Tensor,
                intermediate_tensors: Optional[IntermediateTensors] = None,
                inputs_embeds: Optional[torch.Tensor] = None,
                **kwargs: object):

        if intermediate_tensors is not None:
            inputs_embeds = None

        # NOTE: In v1, inputs_embeds is always generated at model runner, this
        # condition is for v0 compatibility
        elif inputs_embeds is None:
            vision_embeddings = self.get_multimodal_embeddings(**kwargs)
            inputs_embeds = self.get_input_embeddings(input_ids,
                                                      vision_embeddings)
            input_ids = None

        hidden_states = self.language_model(input_ids,
                                            positions,
                                            intermediate_tensors,
                                            inputs_embeds=inputs_embeds)

        return hidden_states

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
        sampling_metadata: SamplingMetadata,
    ) -> Optional[torch.Tensor]:
        return self.language_model.compute_logits(hidden_states,
                                                  sampling_metadata)


    def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]:
        processed_weights = []
        
        for name, tensor in weights:
            if 'sam_model' in name or 'vision_model' in name or 'projector' in name or 'image_newline' in name or 'view_seperator' in name:
                new_name = name.replace('model.', '', 1)
            else:
                new_name = 'language.' + name

            processed_weights.append((new_name, tensor))
        
        loader = AutoWeightsLoader(self)
        autoloaded_weights = loader.load_weights(processed_weights, mapper=self.hf_to_vllm_mapper)





        return autoloaded_weights