Spaces:
Running
Running
File size: 21,888 Bytes
00613e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
"""Inference-only Deepseek-OCR model compatible with HuggingFace weights."""
import math
from collections.abc import Iterable, Mapping, Sequence
from typing import List, Literal, Optional, Set, Tuple, TypedDict, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers import BatchFeature
from vllm.config import VllmConfig
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.utils import set_default_torch_dtype
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs, NestedTensors)
from vllm.multimodal.parse import (ImageEmbeddingItems, ImageProcessorItems,
ImageSize, MultiModalDataItems)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.deepseek_vl2 import (DeepseekVLV2Config,
MlpProjectorConfig,
VisionEncoderConfig)
from process.image_process import (
DeepseekOCRProcessor, count_tiles)
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
# from vllm.utils import is_list_of
from vllm.model_executor.models.interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
from vllm.model_executor.models.utils import (AutoWeightsLoader, WeightsMapper, flatten_bn,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
from deepencoder.sam_vary_sdpa import build_sam_vit_b
from deepencoder.clip_sdpa import build_clip_l
from deepencoder.build_linear import MlpProjector
from addict import Dict
# import time
from config import IMAGE_SIZE, BASE_SIZE, CROP_MODE, PRINT_NUM_VIS_TOKENS, PROMPT
# The image token id may be various
_IMAGE_TOKEN = "<image>"
class DeepseekOCRProcessingInfo(BaseProcessingInfo):
def get_hf_config(self):
return self.ctx.get_hf_config(DeepseekVLV2Config)
def get_hf_processor(self, **kwargs: object):
return self.ctx.get_hf_processor(DeepseekOCRProcessor, **kwargs)
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None}
def get_num_image_tokens(self,
*,
image_width: int,
image_height: int,
cropping: bool = True) -> int:
hf_processor = self.get_hf_processor()
# image_size = hf_processor.image_size
# patch_size = hf_processor.patch_size
# downsample_ratio = hf_processor.downsample_ratio
image_size = IMAGE_SIZE
base_size = BASE_SIZE
patch_size = 16
downsample_ratio = 4
if CROP_MODE:
if image_width <= 640 and image_height <= 640:
crop_ratio = [1, 1]
else:
# images_crop_raw, crop_ratio = hf_processor.dynamic_preprocess(image)
# find the closest aspect ratio to the target
crop_ratio = count_tiles(image_width, image_height, image_size=IMAGE_SIZE)
# print('===========')
# print('crop_ratio ', crop_ratio)
# print('============')
num_width_tiles, num_height_tiles = crop_ratio
else:
num_width_tiles = num_height_tiles = 1
h = w = math.ceil((base_size // patch_size) / downsample_ratio)
h2 = w2 = math.ceil((image_size // patch_size) / downsample_ratio)
global_views_tokens = h * (w + 1)
if num_width_tiles >1 or num_height_tiles>1:
local_views_tokens = (num_height_tiles * h2) * (num_width_tiles * w2 + 1)
else:
local_views_tokens = 0
return global_views_tokens + local_views_tokens + 1
def get_image_size_with_most_features(self) -> ImageSize:
if IMAGE_SIZE == 1024 and BASE_SIZE == 1280:
return ImageSize(width=1024*2, height=1024*2)
return ImageSize(width=640*2, height=640*2)
class DeepseekOCRDummyInputsBuilder(
BaseDummyInputsBuilder[DeepseekOCRProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
return image_token * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
max_image_size = self.info.get_image_size_with_most_features()
if '<image>' in PROMPT:
return {
"image":
DeepseekOCRProcessor().tokenize_with_images(images = self._get_dummy_images(width=max_image_size.width,
height=max_image_size.height,
num_images=num_images), bos=True, eos=True, cropping=CROP_MODE)
}
else:
return {
"image": []
}
class DeepseekOCRMultiModalProcessor(
BaseMultiModalProcessor[DeepseekOCRProcessingInfo]):
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
# print(mm_data)
if mm_data:
processed_outputs = self.info.ctx.call_hf_processor(
self.info.get_hf_processor(**mm_kwargs),
dict(prompt=prompt, **mm_data),
mm_kwargs,
)
else:
tokenizer = self.info.get_tokenizer()
processed_outputs = tokenizer(prompt,
add_special_tokens=True,
return_tensors="pt")
return processed_outputs
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
images_spatial_crop=MultiModalFieldConfig.batched("image"),
# image_embeds=MultiModalFieldConfig.batched("image2"),
images_crop=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
image_token_id = hf_processor.image_token_id
assert isinstance(image_token_id, int)
def get_replacement_deepseek_vl2(item_idx: int):
images = mm_items.get_items(
"image", (ImageEmbeddingItems, ImageProcessorItems))
if isinstance(images, ImageEmbeddingItems):
num_image_tokens = images.get_feature_size(item_idx)
else:
width = images[0][-1][0][0]
height = images[0][-1][0][1]
num_image_tokens = self.info.get_num_image_tokens(
image_width=width,
image_height=height,
# flag = True,
cropping=CROP_MODE,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement_deepseek_vl2,
)
]
def _cached_apply_hf_processor(
self,
prompt: Union[str, list[int]],
mm_data_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
) -> tuple[list[int], MultiModalKwargs, bool]:
# The processor logic is different for len(images) <= 2 vs > 2
# Since the processing cache assumes that the processor output is
# invariant of how many images are passed per prompt, we only
# perform caching for the most common case
if mm_data_items.get_count("image", strict=False) > 2:
# This code path corresponds to the cache being disabled
return self._apply_hf_processor_main(
prompt=prompt,
mm_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
enable_hf_prompt_update=True,
)
return super()._cached_apply_hf_processor(
prompt=prompt,
mm_data_items=mm_data_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
)
@MULTIMODAL_REGISTRY.register_processor(
DeepseekOCRMultiModalProcessor,
info=DeepseekOCRProcessingInfo,
dummy_inputs=DeepseekOCRDummyInputsBuilder)
class DeepseekOCRForCausalLM(nn.Module, SupportsMultiModal, SupportsPP):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={
"language.": "language_model.",
})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: DeepseekVLV2Config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
multimodal_config = vllm_config.model_config.multimodal_config
# config.model_type ='deepseek_vl_v2'
self.config = config
self.multimodal_config = multimodal_config
self.vision_config = config.vision_config
self.projector_config = config.projector_config
self.text_config = config.text_config
model_config = vllm_config.model_config
tokenizer = cached_tokenizer_from_config(model_config)
self.image_token_id = tokenizer.vocab[_IMAGE_TOKEN]
self.sam_model = build_sam_vit_b()
self.vision_model = build_clip_l()
n_embed = 1280
self.projector = MlpProjector(Dict(projector_type="linear", input_dim=2048, n_embed=n_embed))
self.tile_tag = config.tile_tag
self.global_view_pos = config.global_view_pos
# self.sam_model = torch.compile(self.sam_model, mode="reduce-overhead")
# self.vision_model = torch.compile(self.vision_model, mode="reduce-overhead")
# self.projector = torch.compile(self.projector, mode="max-autotune")
# special token for image token sequence format
embed_std = 1 / torch.sqrt(torch.tensor(n_embed, dtype=torch.float32))
if self.tile_tag == "2D":
# <|view_separator|>, <|\n|>
self.image_newline = nn.Parameter(torch.randn(n_embed) * embed_std)
self.view_seperator = nn.Parameter(torch.randn(n_embed) * embed_std)
else:
raise ValueError(
f"Only 2D tile_tag is supported currently, got: {self.tile_tag}"
)
if self.text_config.topk_method == "noaux_tc":
architectures = ["DeepseekV3ForCausalLM"]
elif not self.text_config.use_mla:
architectures = ["DeepseekForCausalLM"]
else:
architectures = ["DeepseekV2ForCausalLM"]
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=self.text_config,
prefix=maybe_prefix(prefix, "language"),
architectures=architectures,
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _parse_and_validate_image_input(
self, **kwargs: object):
pixel_values = kwargs.pop("pixel_values", None)
images_spatial_crop = kwargs.pop("images_spatial_crop", None)
images_crop = kwargs.pop("images_crop", None)
if pixel_values is None or torch.sum(pixel_values).item() == 0:
return None
if pixel_values is not None:
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
if not isinstance(images_spatial_crop, (torch.Tensor, list)):
raise ValueError("Incorrect type of image sizes. "
f"Got type: {type(images_spatial_crop)}")
if not isinstance(images_crop, (torch.Tensor, list)):
raise ValueError("Incorrect type of image crop. "
f"Got type: {type(images_crop)}")
return [pixel_values, images_crop, images_spatial_crop]
raise AssertionError("This line should be unreachable.")
def _pixel_values_to_embedding(
self,
pixel_values: torch.Tensor,
images_crop: torch.Tensor,
images_spatial_crop: torch.Tensor,
) -> NestedTensors:
# Pixel_values (global view): [n_image, batch_size, 3, height, width]
# images_spatial_crop: [n_image, batch_size, [num_tiles_w, num_tiles_h]]
# images_crop (local view): [n_image, batch_size, num_pathes, 3, h, w]
# split the pixel and image_crop, all batch_size = 1
images_in_this_batch = []
# print(type(images_crop))
# print(pixel_values.shape)
with torch.no_grad():
for jdx in range(images_spatial_crop.size(0)):
# with torch.set_grad_enabled(False):
patches = images_crop[jdx][0].to(torch.bfloat16) # batch_size = 1
image_ori = pixel_values[jdx]
crop_shape = images_spatial_crop[jdx][0]
if torch.sum(patches).item() != 0: # if all values = 0, no crop
# P, C, H, W = patches.shape
# crop_flag = 1
local_features_1 = self.sam_model(patches)
#TODO del patches
# torch.compiler.cudagraph_mark_step_begin()
local_features_2 = self.vision_model(patches, local_features_1)
local_features = torch.cat((local_features_2[:, 1:], local_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
local_features = self.projector(local_features)
global_features_1 = self.sam_model(image_ori)
global_features_2 = self.vision_model(image_ori, global_features_1)
global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features = self.projector(global_features)
if PRINT_NUM_VIS_TOKENS:
print('=====================')
print('BASE: ', global_features.shape)
print('PATCHES: ', local_features.shape)
print('=====================')
_, hw, n_dim = global_features.shape
h = w = int(hw ** 0.5)
_2, hw2, n_dim2 = local_features.shape
h2 = w2 = int(hw2 ** 0.5)
width_crop_num, height_crop_num = crop_shape[0], crop_shape[1]
global_features = global_features.view(h, w, n_dim)
global_features = torch.cat(
[global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
)
global_features = global_features.view(-1, n_dim)
local_features = local_features.view(height_crop_num, width_crop_num, h2, w2, n_dim2).permute(0, 2, 1, 3, 4).reshape(height_crop_num*h2, width_crop_num*w2, n_dim2)
local_features = torch.cat(
[local_features, self.image_newline[None, None, :].expand(height_crop_num * h2, 1, n_dim2)], dim=1
)
local_features = local_features.view(-1, n_dim2)
global_local_features = torch.cat([local_features, global_features, self.view_seperator[None, :]], dim=0)
else:
global_features_1 = self.sam_model(image_ori)
global_features_2 = self.vision_model(image_ori, global_features_1)
global_features = torch.cat((global_features_2[:, 1:], global_features_1.flatten(2).permute(0, 2, 1)), dim=-1)
global_features = self.projector(global_features)
if PRINT_NUM_VIS_TOKENS:
print('=====================')
print('BASE: ', global_features.shape)
print('NO PATCHES')
print('=====================')
_, hw, n_dim = global_features.shape
h = w = int(hw ** 0.5)
global_features = global_features.view(h, w, n_dim)
global_features = torch.cat(
[global_features, self.image_newline[None, None, :].expand(h, 1, n_dim)], dim=1
)
global_features = global_features.view(-1, n_dim)
global_local_features = torch.cat([global_features, self.view_seperator[None, :]], dim=0)
images_in_this_batch.append(global_local_features)
return images_in_this_batch
def _process_image_input(
self, image_input) -> torch.Tensor:
# image_input: [pixel_values, images_crop, images_spatial_crop]
pixel_values = image_input[0].to(torch.bfloat16)
# print(image_input[1][0].shape)
# print(type(image_input[1]))
# exit()
# images_crop = image_input[1].to(torch.bfloat16)
images_crop = image_input[1]
# images_crop = image_input[1]
images_spatial_crop = image_input[2].to(dtype=torch.long)
# local_start = time.time()
vision_features = self._pixel_values_to_embedding(
pixel_values=pixel_values, images_crop = images_crop, images_spatial_crop=images_spatial_crop)
# local_total_time = time.time() - local_start
# print('encoder_time: ', local_total_time)
# exit()
return vision_features
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def get_multimodal_embeddings(
self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
image_input = self._parse_and_validate_image_input(**kwargs)
if image_input is None:
return None
vision_embeddings = self._process_image_input(image_input)
return vision_embeddings
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
inputs_embeds = self.language_model.get_input_embeddings(input_ids)
if multimodal_embeddings is not None:
inputs_embeds = merge_multimodal_embeddings(
input_ids, inputs_embeds, multimodal_embeddings,
self.image_token_id)
# print(len(multimodal_embeddings))
# print(input_ids.shape)
# print(type(inputs_embeds))
# print(inputs_embeds.shape)
return inputs_embeds
def forward(self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object):
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility
elif inputs_embeds is None:
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids,
vision_embeddings)
input_ids = None
hidden_states = self.language_model(input_ids,
positions,
intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(hidden_states,
sampling_metadata)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]:
processed_weights = []
for name, tensor in weights:
if 'sam_model' in name or 'vision_model' in name or 'projector' in name or 'image_newline' in name or 'view_seperator' in name:
new_name = name.replace('model.', '', 1)
else:
new_name = 'language.' + name
processed_weights.append((new_name, tensor))
loader = AutoWeightsLoader(self)
autoloaded_weights = loader.load_weights(processed_weights, mapper=self.hf_to_vllm_mapper)
return autoloaded_weights
|