Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass, field | |
| from typing import Optional | |
| class ModelArguments: | |
| """ | |
| Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | |
| """ | |
| model_name_or_path: str = field( | |
| metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | |
| ) | |
| ptuning_checkpoint: str = field( | |
| default=None, metadata={"help": "Path to p-tuning v2 checkpoints"} | |
| ) | |
| config_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | |
| ) | |
| tokenizer_name: Optional[str] = field( | |
| default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | |
| ) | |
| cache_dir: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | |
| ) | |
| use_fast_tokenizer: bool = field( | |
| default=True, | |
| metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | |
| ) | |
| model_revision: str = field( | |
| default="main", | |
| metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | |
| ) | |
| use_auth_token: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Will use the token generated when running `huggingface-cli login` (necessary to use this script " | |
| "with private models)." | |
| ) | |
| }, | |
| ) | |
| resize_position_embeddings: Optional[bool] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Whether to automatically resize the position embeddings if `max_source_length` exceeds " | |
| "the model's position embeddings." | |
| ) | |
| }, | |
| ) | |
| quantization_bit: Optional[int] = field( | |
| default=None | |
| ) | |
| pre_seq_len: Optional[int] = field( | |
| default=None | |
| ) | |
| prefix_projection: bool = field( | |
| default=False | |
| ) | |
| class DataTrainingArguments: | |
| """ | |
| Arguments pertaining to what data we are going to input our model for training and eval. | |
| """ | |
| lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."}) | |
| dataset_name: Optional[str] = field( | |
| default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | |
| ) | |
| dataset_config_name: Optional[str] = field( | |
| default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | |
| ) | |
| prompt_column: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, | |
| ) | |
| response_column: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."}, | |
| ) | |
| history_column: Optional[str] = field( | |
| default=None, | |
| metadata={"help": "The name of the column in the datasets containing the history of chat."}, | |
| ) | |
| train_file: Optional[str] = field( | |
| default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."} | |
| ) | |
| validation_file: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." | |
| ) | |
| }, | |
| ) | |
| test_file: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)." | |
| }, | |
| ) | |
| overwrite_cache: bool = field( | |
| default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} | |
| ) | |
| preprocessing_num_workers: Optional[int] = field( | |
| default=None, | |
| metadata={"help": "The number of processes to use for the preprocessing."}, | |
| ) | |
| max_source_length: Optional[int] = field( | |
| default=1024, | |
| metadata={ | |
| "help": ( | |
| "The maximum total input sequence length after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| max_target_length: Optional[int] = field( | |
| default=128, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded." | |
| ) | |
| }, | |
| ) | |
| val_max_target_length: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The maximum total sequence length for validation target text after tokenization. Sequences longer " | |
| "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." | |
| "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " | |
| "during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| pad_to_max_length: bool = field( | |
| default=False, | |
| metadata={ | |
| "help": ( | |
| "Whether to pad all samples to model maximum sentence length. " | |
| "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " | |
| "efficient on GPU but very bad for TPU." | |
| ) | |
| }, | |
| ) | |
| max_train_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_eval_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| max_predict_samples: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "For debugging purposes or quicker training, truncate the number of prediction examples to this " | |
| "value if set." | |
| ) | |
| }, | |
| ) | |
| num_beams: Optional[int] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, " | |
| "which is used during ``evaluate`` and ``predict``." | |
| ) | |
| }, | |
| ) | |
| ignore_pad_token_for_loss: bool = field( | |
| default=True, | |
| metadata={ | |
| "help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not." | |
| }, | |
| ) | |
| source_prefix: Optional[str] = field( | |
| default="", metadata={"help": "A prefix to add before every source text (useful for T5 models)."} | |
| ) | |
| forced_bos_token: Optional[str] = field( | |
| default=None, | |
| metadata={ | |
| "help": ( | |
| "The token to force as the first generated token after the decoder_start_token_id." | |
| "Useful for multilingual models like mBART where the first generated token" | |
| "needs to be the target language token (Usually it is the target language token)" | |
| ) | |
| }, | |
| ) | |
| def __post_init__(self): | |
| if self.dataset_name is None and self.train_file is None and self.validation_file is None and self.test_file is None: | |
| raise ValueError("Need either a dataset name or a training/validation/test file.") | |
| else: | |
| if self.train_file is not None: | |
| extension = self.train_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." | |
| if self.validation_file is not None: | |
| extension = self.validation_file.split(".")[-1] | |
| assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." | |
| if self.val_max_target_length is None: | |
| self.val_max_target_length = self.max_target_length | |