Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Fine-tuning the library models for sequence to sequence. | |
| """ | |
| # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. | |
| import logging | |
| import os | |
| import sys | |
| import json | |
| import numpy as np | |
| from datasets import load_dataset | |
| import jieba | |
| from rouge_chinese import Rouge | |
| from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction | |
| import torch | |
| import transformers | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModel, | |
| AutoTokenizer, | |
| DataCollatorForSeq2Seq, | |
| HfArgumentParser, | |
| Seq2SeqTrainingArguments, | |
| set_seed, | |
| ) | |
| from trainer_seq2seq import Seq2SeqTrainer | |
| from arguments import ModelArguments, DataTrainingArguments | |
| logger = logging.getLogger(__name__) | |
| def main(): | |
| parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | |
| if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | |
| # If we pass only one argument to the script and it's the path to a json file, | |
| # let's parse it to get our arguments. | |
| model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | |
| else: | |
| model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
| # Setup logging | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| handlers=[logging.StreamHandler(sys.stdout)], | |
| ) | |
| if training_args.should_log: | |
| # The default of training_args.log_level is passive, so we set log level at info here to have that default. | |
| transformers.utils.logging.set_verbosity_info() | |
| log_level = training_args.get_process_log_level() | |
| logger.setLevel(log_level) | |
| # datasets.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.set_verbosity(log_level) | |
| transformers.utils.logging.enable_default_handler() | |
| transformers.utils.logging.enable_explicit_format() | |
| # Log on each process the small summary: | |
| logger.warning( | |
| f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | |
| + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | |
| ) | |
| logger.info(f"Training/evaluation parameters {training_args}") | |
| # Set seed before initializing model. | |
| set_seed(training_args.seed) | |
| # Load dataset | |
| data_files = {} | |
| if data_args.train_file is not None: | |
| data_files["train"] = data_args.train_file | |
| extension = data_args.train_file.split(".")[-1] | |
| if data_args.validation_file is not None: | |
| data_files["validation"] = data_args.validation_file | |
| extension = data_args.validation_file.split(".")[-1] | |
| if data_args.test_file is not None: | |
| data_files["test"] = data_args.test_file | |
| extension = data_args.test_file.split(".")[-1] | |
| raw_datasets = load_dataset( | |
| extension, | |
| data_files=data_files, | |
| cache_dir=model_args.cache_dir, | |
| use_auth_token=True if model_args.use_auth_token else None, | |
| ) | |
| # Load pretrained model and tokenizer | |
| config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) | |
| config.pre_seq_len = model_args.pre_seq_len | |
| config.prefix_projection = model_args.prefix_projection | |
| tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) | |
| if model_args.ptuning_checkpoint is not None: | |
| # Evaluation | |
| # Loading extra state dict of prefix encoder | |
| model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) | |
| prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin")) | |
| new_prefix_state_dict = {} | |
| for k, v in prefix_state_dict.items(): | |
| if k.startswith("transformer.prefix_encoder."): | |
| new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v | |
| model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) | |
| else: | |
| model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True) | |
| if model_args.quantization_bit is not None: | |
| print(f"Quantized to {model_args.quantization_bit} bit") | |
| model = model.quantize(model_args.quantization_bit) | |
| if model_args.pre_seq_len is not None: | |
| # P-tuning v2 | |
| model = model.half() | |
| model.transformer.prefix_encoder.float() | |
| else: | |
| # Finetune | |
| model = model.float() | |
| prefix = data_args.source_prefix if data_args.source_prefix is not None else "" | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| if training_args.do_train: | |
| column_names = raw_datasets["train"].column_names | |
| elif training_args.do_eval: | |
| column_names = raw_datasets["validation"].column_names | |
| elif training_args.do_predict: | |
| column_names = raw_datasets["test"].column_names | |
| else: | |
| logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") | |
| return | |
| # Get the column names for input/target. | |
| prompt_column = data_args.prompt_column | |
| response_column = data_args.response_column | |
| history_column = data_args.history_column | |
| # Temporarily set max_target_length for training. | |
| max_target_length = data_args.max_target_length | |
| def preprocess_function_eval(examples): | |
| inputs, targets = [], [] | |
| for i in range(len(examples[prompt_column])): | |
| if examples[prompt_column][i] and examples[response_column][i]: | |
| query = examples[prompt_column][i] | |
| history = examples[history_column][i] if history_column is not None else None | |
| prompt = tokenizer.build_prompt(query, history) | |
| inputs.append(prompt) | |
| targets.append(examples[response_column][i]) | |
| inputs = [prefix + inp for inp in inputs] | |
| model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True) | |
| labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True) | |
| if data_args.ignore_pad_token_for_loss: | |
| labels["input_ids"] = [ | |
| [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"] | |
| ] | |
| model_inputs["labels"] = labels["input_ids"] | |
| return model_inputs | |
| def preprocess_function_train(examples): | |
| max_seq_length = data_args.max_source_length + data_args.max_target_length | |
| model_inputs = { | |
| "input_ids": [], | |
| "labels": [], | |
| } | |
| for i in range(len(examples[prompt_column])): | |
| if examples[prompt_column][i] and examples[response_column][i]: | |
| query, answer = examples[prompt_column][i], examples[response_column][i] | |
| history = examples[history_column][i] if history_column is not None else None | |
| prompt = tokenizer.build_prompt(query, history) | |
| prompt = prefix + prompt | |
| a_ids = tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True, | |
| max_length=data_args.max_source_length) | |
| b_ids = tokenizer.encode(text=answer, add_special_tokens=False, truncation=True, | |
| max_length=data_args.max_target_length) | |
| context_length = len(a_ids) | |
| input_ids = a_ids + b_ids + [tokenizer.eos_token_id] | |
| labels = [tokenizer.pad_token_id] * context_length + b_ids + [tokenizer.eos_token_id] | |
| pad_len = max_seq_length - len(input_ids) | |
| input_ids = input_ids + [tokenizer.pad_token_id] * pad_len | |
| labels = labels + [tokenizer.pad_token_id] * pad_len | |
| if data_args.ignore_pad_token_for_loss: | |
| labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels] | |
| model_inputs["input_ids"].append(input_ids) | |
| model_inputs["labels"].append(labels) | |
| return model_inputs | |
| def print_dataset_example(example): | |
| print("input_ids", example["input_ids"]) | |
| print("inputs", tokenizer.decode(example["input_ids"])) | |
| print("label_ids", example["labels"]) | |
| print("labels", tokenizer.decode(example["labels"])) | |
| if training_args.do_train: | |
| if "train" not in raw_datasets: | |
| raise ValueError("--do_train requires a train dataset") | |
| train_dataset = raw_datasets["train"] | |
| if data_args.max_train_samples is not None: | |
| max_train_samples = min(len(train_dataset), data_args.max_train_samples) | |
| train_dataset = train_dataset.select(range(max_train_samples)) | |
| with training_args.main_process_first(desc="train dataset map pre-processing"): | |
| train_dataset = train_dataset.map( | |
| preprocess_function_train, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on train dataset", | |
| ) | |
| print_dataset_example(train_dataset[0]) | |
| if training_args.do_eval: | |
| max_target_length = data_args.val_max_target_length | |
| if "validation" not in raw_datasets: | |
| raise ValueError("--do_eval requires a validation dataset") | |
| eval_dataset = raw_datasets["validation"] | |
| if data_args.max_eval_samples is not None: | |
| max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) | |
| eval_dataset = eval_dataset.select(range(max_eval_samples)) | |
| with training_args.main_process_first(desc="validation dataset map pre-processing"): | |
| eval_dataset = eval_dataset.map( | |
| preprocess_function_eval, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on validation dataset", | |
| ) | |
| print_dataset_example(eval_dataset[0]) | |
| if training_args.do_predict: | |
| max_target_length = data_args.val_max_target_length | |
| if "test" not in raw_datasets: | |
| raise ValueError("--do_predict requires a test dataset") | |
| predict_dataset = raw_datasets["test"] | |
| if data_args.max_predict_samples is not None: | |
| max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) | |
| predict_dataset = predict_dataset.select(range(max_predict_samples)) | |
| with training_args.main_process_first(desc="prediction dataset map pre-processing"): | |
| predict_dataset = predict_dataset.map( | |
| preprocess_function_eval, | |
| batched=True, | |
| num_proc=data_args.preprocessing_num_workers, | |
| remove_columns=column_names, | |
| load_from_cache_file=not data_args.overwrite_cache, | |
| desc="Running tokenizer on prediction dataset", | |
| ) | |
| print_dataset_example(predict_dataset[0]) | |
| # Data collator | |
| label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id | |
| data_collator = DataCollatorForSeq2Seq( | |
| tokenizer, | |
| model=model, | |
| label_pad_token_id=label_pad_token_id, | |
| pad_to_multiple_of=None, | |
| padding=False | |
| ) | |
| # Metric | |
| def compute_metrics(eval_preds): | |
| preds, labels = eval_preds | |
| if isinstance(preds, tuple): | |
| preds = preds[0] | |
| decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) | |
| if data_args.ignore_pad_token_for_loss: | |
| # Replace -100 in the labels as we can't decode them. | |
| labels = np.where(labels != -100, labels, tokenizer.pad_token_id) | |
| decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) | |
| score_dict = { | |
| "rouge-1": [], | |
| "rouge-2": [], | |
| "rouge-l": [], | |
| "bleu-4": [] | |
| } | |
| for pred, label in zip(decoded_preds, decoded_labels): | |
| hypothesis = list(jieba.cut(pred)) | |
| reference = list(jieba.cut(label)) | |
| rouge = Rouge() | |
| scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference)) | |
| result = scores[0] | |
| for k, v in result.items(): | |
| score_dict[k].append(round(v["f"] * 100, 4)) | |
| bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) | |
| score_dict["bleu-4"].append(round(bleu_score * 100, 4)) | |
| for k, v in score_dict.items(): | |
| score_dict[k] = float(np.mean(v)) | |
| return score_dict | |
| # Override the decoding parameters of Seq2SeqTrainer | |
| training_args.generation_max_length = ( | |
| training_args.generation_max_length | |
| if training_args.generation_max_length is not None | |
| else data_args.val_max_target_length | |
| ) | |
| training_args.generation_num_beams = ( | |
| data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams | |
| ) | |
| # Initialize our Trainer | |
| trainer = Seq2SeqTrainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_dataset if training_args.do_train else None, | |
| eval_dataset=eval_dataset if training_args.do_eval else None, | |
| tokenizer=tokenizer, | |
| data_collator=data_collator, | |
| compute_metrics=compute_metrics if training_args.predict_with_generate else None, | |
| save_prefixencoder=model_args.pre_seq_len is not None | |
| ) | |
| # Training | |
| if training_args.do_train: | |
| checkpoint = None | |
| if training_args.resume_from_checkpoint is not None: | |
| checkpoint = training_args.resume_from_checkpoint | |
| # elif last_checkpoint is not None: | |
| # checkpoint = last_checkpoint | |
| model.gradient_checkpointing_enable() | |
| model.enable_input_require_grads() | |
| train_result = trainer.train(resume_from_checkpoint=checkpoint) | |
| # trainer.save_model() # Saves the tokenizer too for easy upload | |
| metrics = train_result.metrics | |
| max_train_samples = ( | |
| data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) | |
| ) | |
| metrics["train_samples"] = min(max_train_samples, len(train_dataset)) | |
| trainer.log_metrics("train", metrics) | |
| trainer.save_metrics("train", metrics) | |
| trainer.save_state() | |
| # Evaluation | |
| results = {} | |
| max_seq_length = data_args.max_source_length + data_args.max_target_length + 1 | |
| if training_args.do_eval: | |
| logger.info("*** Evaluate ***") | |
| metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=max_seq_length, temperature=0.95) | |
| max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) | |
| metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) | |
| trainer.log_metrics("eval", metrics) | |
| trainer.save_metrics("eval", metrics) | |
| if training_args.do_predict: | |
| logger.info("*** Predict ***") | |
| predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95) | |
| metrics = predict_results.metrics | |
| max_predict_samples = ( | |
| data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset) | |
| ) | |
| metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset)) | |
| trainer.log_metrics("predict", metrics) | |
| trainer.save_metrics("predict", metrics) | |
| if trainer.is_world_process_zero(): | |
| if training_args.predict_with_generate: | |
| predictions = tokenizer.batch_decode( | |
| predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
| ) | |
| predictions = [pred.strip() for pred in predictions] | |
| labels = tokenizer.batch_decode( | |
| predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
| ) | |
| labels = [label.strip() for label in labels] | |
| output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt") | |
| with open(output_prediction_file, "w", encoding="utf-8") as writer: | |
| for p, l in zip(predictions, labels): | |
| res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False) | |
| writer.write(f"{res}\n") | |
| return results | |
| def _mp_fn(index): | |
| # For xla_spawn (TPUs) | |
| main() | |
| if __name__ == "__main__": | |
| main() | |