File size: 46,642 Bytes
badcf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
\section*{Supplementary code}

The LLM benchmark codebase is a structured collection of files and directories for large language model evaluation. Below is an introduction to the function of each component within the \texttt{"LLM benchmark"} directory:

\begin{itemize}

    \item \textbf{data}: This directory contains the datasets used for geological knowledge extraction and evaluation.
    \begin{itemize}
        \item \texttt{Task1}: Stores geological texts and their corresponding triplets for testing large language models' triplet extraction capabilities, providing prompts and evaluation data for assessing LLM performance in geological knowledge extraction.
        \item \texttt{Task2}: Includes Yes or No tests and Factoid tests with texts, questions, and answers, encompassing five categories of sub-questions with 200 data entries each for comprehensive geological question-answering evaluation.
    \end{itemize}
    
    \item \textbf{scripts}: The \texttt{scripts} directory contains preprocessing and utility scripts for both tasks:
    \begin{itemize}
        \item \texttt{Task1/KNN\_token.py}: Implements entity-level detection based on geological texts, finding the most similar texts from the original dataset (1-500) and other geological texts (500-1000) as prompts.
        \item \texttt{Task2/cot\_process.py}: Extracts core insights from Task2's chain-of-thought responses using GPT-4o-mini for evaluation purposes.
        \item \texttt{Task2/KNN.py}: Uses BERT-base-Chinese and cosine similarity to retrieve the most similar texts for prompting.
        \item \texttt{utils/LLM.py}: Provides unified API interfaces for multiple large language models including GPT, Gemini, Claude, and others.
    \end{itemize}
    
    \item \textbf{tasks}: This directory contains task-specific implementations:
    \begin{itemize}
        \item \textbf{task1}: Focuses on extracting 24 types of geological relationship triplets from given geological texts.
        \begin{itemize}
            \item \texttt{eval.py}: Evaluates triplet extraction performance on geological texts from dataset 1-500, measuring precision, recall, and F1 scores for both triplets and BERTScore metrics.
            \item \texttt{Task1\_test.ipynb}: Interactive notebook for testing different prompting approaches including zero-shot, few-shot, KNN-based, and knowledge-guided methods.
            \item \texttt{metrics/graph\_matching.py}: Implements graph-based evaluation metrics for measuring triple extraction performance.
            \item \texttt{utils/prompt\_generate.py}: Contains functions for generating prompts for various tasks.
            \item \texttt{utils/response\_to\_json.py}: Contains functions for converting model responses into JSON format.

        \end{itemize}
        
        \item \textbf{task2}: Tests large language models' capabilities in geological judgment (Yes or No) and factual extraction (Factoid).
        \begin{itemize}
            \item \texttt{eval.py}: Evaluates LLM performance in judgment and factual extraction using accuracy, precision, recall, BERTScore, and METEOR score metrics.
            \item \texttt{pretreatment\_split\_data\_Geo.py}: Splits 200 judgment and factual extraction entries into testing sets (for LLM evaluation) and prompt sets (for LLM prompting).
            \item \texttt{Task2\_test.ipynb}: Interactive testing notebook supporting various prompting strategies and chain-of-thought reasoning.
            \item \texttt{utils/knn\_prompt.py}: Generates prompts using K-nearest neighbor examples for improved context-aware questioning.
            \item \texttt{utils/prompt\_get.py}: Provides flexible prompt generation with support for different shot configurations and example selection.            
            \item \texttt{utils/save\_response.py}: Handles structured saving of model responses in JSON format for analysis and evaluation.

        \end{itemize}
    \end{itemize}
\end{itemize}

\newpage
The scripts/Task1/KNN_token.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
'''
Entity-level retrieval using KNN algorithm
'''
import json
import numpy as np
import faiss
from transformers import AutoTokenizer, AutoModel
import torch
from collections import defaultdict

class EntityLevelRetriever:
    def __init__(self, model_name='bert-base-chinese'):
        """
        Initialize entity-level retriever
        Args:
            model_name: Pre-trained model name for encoding
        """
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)
        self.model.eval()
        
        # Initialize FAISS index and storage
        self.entity_db = []
        self.metadata = []
        self.index = faiss.IndexFlatIP(768)  # Inner product for cosine similarity
        
    def _get_entity_span(self, text, entity):
        """Get character span of entity in text"""
        start = text.find(entity)
        if start == -1:
            return None
        return (start, start + len(entity))
        
    def _generate_entity_embedding(self, text, entity):
        """Generate entity-level contextual embeddings"""
        span = self._get_entity_span(text, entity)
        if not span:
            return None

        inputs = self.tokenizer(text, return_tensors='pt', truncation=True)
        with torch.no_grad():
            outputs = self.model(**inputs)

        # Convert character positions to token positions
        char_to_token = lambda x: inputs.char_to_token(x)
        start_token = char_to_token(span[0])
        end_token = char_to_token(span[1]-1)

        if not start_token or not end_token:
            return None

        # Extract and average token embeddings for the entity
        entity_embedding = outputs.last_hidden_state[0, start_token:end_token+1].mean(dim=0).numpy()
        return entity_embedding.astype('float32')
        
    def build_index(self, train_path):
        """Build entity index from training data"""
        with open(train_path, 'r', encoding='utf-8') as f:
            dataset = json.load(f)
        
        # Use data from index 500-1000 as specified in original implementation
        dataset = dataset[500:1000]
        
        for item in dataset:
            text = item['text']
            for triple in item['triple_list']:
                # Process head and tail entities
                for entity in [triple[0], triple[2]]:
                    embedding = self._generate_entity_embedding(text, entity)
                    if embedding is not None:
                        self.entity_db.append(embedding)
                        self.metadata.append({
                            'entity': entity,
                            'type': triple[1],  # Store relation type
                            'context': text
                        })

        print(f"Entity count check - vectors: {len(self.entity_db)}, metadata: {len(self.metadata)}")
        self.index.add(np.array(self.entity_db))
        
    def search_texts(self, test_path, top_k=3):
        """Search for similar texts based on entity matching"""
        with open(test_path, 'r', encoding='utf-8') as f:
            test_data = json.load(f)
            
        results = []
        for item in test_data:
            query_text = item['text']
            
            # Extract entities from query text and generate embeddings
            query_entities = []
            for triple in item.get('triple_list', []):
                query_entities.extend([triple[0], triple[2]])
                
            if not query_entities:
                continue
                
            # Generate embeddings for query entities
            query_embeddings = []
            for entity in query_entities:
                embedding = self._generate_entity_embedding(query_text, entity)
                if embedding is not None:
                    query_embeddings.append(embedding)
                    
            if not query_embeddings:
                continue
                
            # Search for similar entities
            query_embeddings = np.array(query_embeddings)
            scores, indices = self.index.search(query_embeddings, top_k)
            
            # Collect matched texts
            matched_texts = []
            for score_array, index_array in zip(scores, indices):
                for score, idx in zip(score_array, index_array):
                    if idx != -1 and score > 0.5:  # Similarity threshold
                        metadata = self.metadata[idx]
                        matched_texts.append({
                            'entity': metadata['entity'],
                            'relation': metadata['type'],
                            'context': metadata['context'],
                            'score': float(score)
                        })
            
            # Sort by score and take top results
            matched_texts.sort(key=lambda x: x['score'], reverse=True)
            matched_texts = matched_texts[:top_k]
            
            results.append({
                'query_text': query_text,
                'matched_texts': matched_texts
            })
            
        return results

# Usage example
if __name__ == "__main__":
    # Initialize retrieval system
    retriever = EntityLevelRetriever()

    # Build training index
    print("Building training index...")
    retriever.build_index('./data/Task1/train_triples.json')

    # Execute test retrieval
    print("\nSearching similar entities...")
    text_results = retriever.search_texts('./data/Task1/GT_500.json', top_k=3)

    # Save results
    with open('./data/Task1/text_retrieval_results.json', 'w', encoding='utf-8') as f:
        json.dump(text_results, f, ensure_ascii=False, indent=2)
\end{minted}

\newpage
The scripts/Task2/cot_process.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
import json
from utils.LLM import LLM_request

'''
Use GPT-4o-mini-2024-07-18 as reasoning model to extract core phrases/entities 
from CoT responses, replace original answers and save as new files
'''

# Read JSON files - model result paths for processing
model_results_paths = [
    './output/Task2/cot/cot/deepseek-ai/DeepSeek-R1_f.json',
    './output/Task2/cot/cot/gpt-3.5-turbo_f.json',
    './output/Task2/cot/cot/gpt-4o_f.json',
    './output/Task2/cot/cot/gemini-1.5-pro-002_f.json',
    './output/Task2/cot/cot/claude-3-5-haiku-20241022_f.json',
    './output/Task2/cot/cot/deepseek-ai/DeepSeek-V3_f.json',
    './output/Task2/cot/cot/deepseek-ai/DeepSeek-R1_f.json',
    './output/Task2/cot/cot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    './output/Task2/cot/cot/Qwen/Qwen2.5-72B-Instruct_f.json',
]

# Configuration for processing model
model_series = 'gpt'
model_name = 'gpt-4o-mini-2024-07-18'
prompt = '''
Extract the main factual information from the following sentence that answers the question. 
The answer should be entity phrases without additional explanations or prefix statements.
Question: {question}
Answer: {answer}
Please extract only the core answer:
'''

# Use GPT-4o-mini-2024-07-18 as reasoning model to extract core phrases/entities 
# from CoT responses, replace original answers and save as new files
for i in range(len(model_results_paths)):
    with open(model_results_paths[i], 'r', encoding='utf-8') as f:
        data = json.load(f)
    
    # Extract JSON filename from model_results_paths and remove '_f.json' suffix
    file_name = model_results_paths[i].split('/')[-1].split('_')[0]    
    print(file_name)
    
    # Create new list to store processed data
    new_data = []
    
    for j in range(len(data)):
        question = data[j]['question']
        answer = data[j]['answer']
        
        # Create processing prompt
        prompt = f"Extract the main factual information from the following sentence that answers the question. The answer should be entity phrases without additional explanations or prefix statements.\nQuestion: {question}\nAnswer: {answer}\nPlease extract only the core answer:"
        # print(prompt)
        response = LLM_request(model_series, model_name, prompt + '\n' + 'Do not include any other irrelevant explanations or meaningless replies')
        # print(response)
        
        # Extract content from ChatCompletionMessage object
        core_answer = response.content if hasattr(response, 'content') else response
        
        # Add processed data to new list
        new_data.append({
            "question": question,
            "answer": core_answer
        })
    
    # Save new data to new JSON file
    new_file_path = f'./output/Task2/cot/cot_new/{file_name}_f_processed.json'
    with open(new_file_path, 'w', encoding='utf-8') as f:
        json.dump(new_data, f, ensure_ascii=False, indent=4)
\end{minted}

\newpage
The scripts/Task2/KNN.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
import pandas as pd
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import json

class GeologicalKNNRetriever:
    """
    K-nearest neighbor retriever for geological question answering
    Uses BERT-base-Chinese and cosine similarity for text matching
    """
    
    def __init__(self, model_name='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'):
        """Initialize KNN retriever with sentence transformer model"""
        self.model = SentenceTransformer(model_name)
        
    def process_knn_data(self, data_path, test_sheet, train_sheet, output_path, k=3):
        """
        Process test data using KNN to find similar training examples
        
        Args:
            data_path: Path to Excel data file
            test_sheet: Name of test data sheet
            train_sheet: Name of training data sheet  
            output_path: Path to save KNN results
            k: Number of nearest neighbors to find
        """
        # Load training and test data
        train_data = pd.read_excel(data_path, sheet_name=train_sheet)
        test_data = pd.read_excel(data_path, sheet_name=test_sheet)
        
        # Encode training texts
        train_texts = train_data['Text'].tolist()
        train_embeddings = self.model.encode(train_texts)
        
        results = []
        
        # Process each test query
        for idx, test_row in test_data.iterrows():
            test_query = {
                'text': test_row['Text'],
                'question': test_row['Question'],
                'answer': test_row['Answer']
            }
            
            # Encode test text and find similar training examples
            test_embedding = self.model.encode([test_query['text']])
            similarities = cosine_similarity(test_embedding, train_embeddings)[0]
            
            # Get top-k most similar examples
            top_k_indices = similarities.argsort()[-k:][::-1]
            
            matched_samples = []
            for train_idx in top_k_indices:
                matched_samples.append({
                    'context': train_data.iloc[train_idx]['Text'],
                    'question': train_data.iloc[train_idx]['Question'], 
                    'answer': train_data.iloc[train_idx]['Answer'],
                    'similarity': float(similarities[train_idx])
                })
            
            results.append({
                'test_query': test_query,
                'matched_samples': matched_samples
            })
        
        # Save results to JSON
        with open(output_path, 'w', encoding='utf-8') as f:
            json.dump(results, f, ensure_ascii=False, indent=2)
        
        print(f"KNN results saved to {output_path}")

def main():
    """Main function to process both Yes/No and Factoid data"""
    retriever = GeologicalKNNRetriever()
    data_path = './data/Task2/data.xlsx'
    
    # Process Yes/No questions
    print("Processing Yes/No questions...")
    retriever.process_knn_data(
        data_path, 'Yes or No Test', 'Yes or No Train', 
        './data/Task2/knn_yes_no.json', k=3
    )
    
    # Process Factoid questions  
    print("Processing Factoid questions...")
    retriever.process_knn_data(
        data_path, 'Factoid Test', 'Factoid Train',
        './data/Task2/knn_factoid.json', k=3
    )

if __name__ == "__main__":
    main()
\end{minted}

\newpage
The tasks/task2/pretreatment_split_data_Geo.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
'''  
Data reading and splitting for geological question answering
Read ./data/Task2/Task2.xlsx file with "Yes or No" and "Factoid" sheets
Both datasets have 200 entries with columns: "ID", "Question", "Answer", "Text"  
The 200 entries are divided into 5 subcategories, 40 entries each, arranged by ID order
(e.g., geological disaster development characteristics, economic loss assessment, etc.)
Split each subcategory: 20 for training (prompting), 20 for testing (evaluation)

Note: When constructing the dataset, continuous adjacent questions may come from the same 
text segment, so when splitting test and training sets, we cannot directly divide by 
original order but need random sampling to build initial dataset.
Random sampling: 20 test + 20 train per subcategory (total 100 test, 100 train per major category)
'''

import pandas as pd
import random

def split_data(data_path, output_path):
    """
    Split geological QA data into training and testing sets
    
    Args:
        data_path: Input Excel file path
        output_path: Output Excel file path for split data
    """
    # Read data from both sheets
    data_yes_no = pd.read_excel(data_path, sheet_name='Yes or No')
    data_factoid = pd.read_excel(data_path, sheet_name='Factoid')

    # Split Yes or No data by categories (5 categories, 40 entries each)
    train_data_yes_no = []
    test_data_yes_no = []
    for category in range(5):
        category_data = data_yes_no[category * 40:(category + 1) * 40]
        random.seed(42)
        train = category_data.sample(n=20, random_state=42)
        test = category_data.drop(train.index)
        train_data_yes_no.append(train)
        test_data_yes_no.append(test)

    # Split Factoid data by categories (5 categories, 40 entries each)  
    train_data_factoid = []
    test_data_factoid = []
    for category in range(5):
        category_data = data_factoid[category * 40:(category + 1) * 40]
        random.seed(42)
        train = category_data.sample(n=20, random_state=42)
        test = category_data.drop(train.index)
        train_data_factoid.append(train)
        test_data_factoid.append(test)

    # Combine data from both sheets
    train_data_yes_no = pd.concat(train_data_yes_no)
    test_data_yes_no = pd.concat(test_data_yes_no)
    train_data_factoid = pd.concat(train_data_factoid)
    test_data_factoid = pd.concat(test_data_factoid)

    # Create Excel writer object
    writer = pd.ExcelWriter(output_path, engine='xlsxwriter')

    # Write data to different sheets
    train_data_yes_no.to_excel(writer, sheet_name='Yes or No Train', index=False)
    test_data_yes_no.to_excel(writer, sheet_name='Yes or No Test', index=False)
    train_data_factoid.to_excel(writer, sheet_name='Factoid Train', index=False)
    test_data_factoid.to_excel(writer, sheet_name='Factoid Test', index=False)

    # Save Excel file
    writer.close()
    
    print(f"Data saved to {output_path}")

if __name__ == "__main__":
    data_path = './data/Task2/Task2.xlsx'
    output_path = './data/Task2/train_test_data.xlsx'
    split_data(data_path, output_path)
\end{minted}

\newpage
The tasks/task2/Task2_test.ipynb file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
# Zero-shot testing, random sample prompting (random_few_shot)

from utils.LLM import LLM_request
from utils.promp_get import get_prompt
from utils.save_response import save_responses
import json

# Model configuration
model_series = 'gpt'
model_name = 'gpt-3.5-turbo'
# model_name = 'gpt-4o'
# model_name='deepseek-ai/DeepSeek-R1'

# model_series = 'gemini'
# model_name = 'gemini-1.5-pro-002'

# model_series = 'claude'
# model_name = 'claude-3-5-haiku-20241022'

# model_series = 'ds_V3_qwen_llama'
# model_name = 'deepseek-ai/DeepSeek-V3'
# model_name = 'Qwen/Qwen2.5-72B-Instruct'
# model_name = 'meta-llama/Meta-Llama-3.1-405B-Instruct'

# Task configuration
type = 'yes_no' 
# type = 'factoid'

# Shot type configuration
shot_type = 'one_shot'
# shot_type = 'two_shot'
# shot_type = 'three_shot'

# Generate prompts and process each one
prompt = get_prompt(type, shot_type)
  
for i in range(0,len(prompt)):
    # Send request to LLM
    response = LLM_request(model_series, model_name, prompt[i]+'\n'+'Do not include any other irrelevant explanations or meaningless replies')
    print(prompt[i])
    print(response)

    # Parse response and save
    save_responses(type, i, response, '../../output/Task2/nomal/'+shot_type+'/'+model_name+'.json', '../../output/Task2/nomal/'+shot_type+'_raw/'+model_name+'.json')
    # save_responses(type, i, response, '../../output/Task2/nomal/'+shot_type+'/'+model_name+'_f'+'.json', './output/Task2/nomal/'+shot_type+'_raw/'+model_name+'_f'+'.json')

# KNN-shot testing
from utils.knn_prompt import generate_prompt
from utils.save_response import save_responses_knn

# Task and shot configuration for KNN
type = 'yes_no' 
# type = 'factoid'

shot_type = 'one_shot'
# shot_type = 'two_shot'
# shot_type = 'three_shot'

# Generate KNN-based prompts
prompt = generate_prompt(type, '../../data/Task2/knn_'+type+'.json', example_num=1)
  
for i in range(0,len(prompt)):
    # Send request to LLM
    response = LLM_request(model_series, model_name, prompt[i]+'\n'+'Do not include any other irrelevant explanations or meaningless replies')
    # print(prompt[i])
    # print(response)

    # Parse response and save with KNN information
    save_responses_knn(prompt[i], type, i, response, '../../output/Task2/knn/'+shot_type+'/'+model_name+'.json', '../../output/Task2/knn/'+shot_type+'_raw/'+model_name+'.json')
    # save_responses_knn(prompt[i], type, i, response, '../../output/Task2/knn/'+shot_type+'/'+model_name+'_f'+'.json', '../../output/Task2/knn/'+shot_type+'_raw/'+model_name+'_f'+'.json')

# Chain-of-Thought (CoT) testing
from utils.knn_prompt import generate_prompt_cot

# Task configuration for CoT
type = 'yes_no' 
# type = 'factoid'

# Generate CoT prompts
prompt = generate_prompt_cot(type, '../../data/Task2/knn_'+type+'.json')
   
for i in range(0,len(prompt)):
    # Send request to LLM with CoT prompting
    response = LLM_request(model_series, model_name, prompt[i]+'\n'+'Do not include any other irrelevant explanations or meaningless replies')
    print(prompt[i])
    print(response)

    # Parse response and save
    save_responses_knn(prompt[i], type, i, response, '../../output/Task2/cot/cot/'+model_name+'.json', '../../output/Task2/cot/cot_raw/'+model_name+'.json')
    # save_responses_knn(prompt[i], type, i, response, '../../output/Task2/cot/cot/'+model_name+'_f'+'.json', '../../output/Task2/cot/cot_raw/'+model_name+'_f'+'.json')
\end{minted}

\newpage
The tasks/task2/eval.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
import pandas as pd
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score
import os
from bert_score import score as score_bert
from nltk.translate.meteor_score import single_meteor_score
import jieba
from collections import Counter

def calculate_metrics(model_results_paths, data_path='./data/Task2/data.xlsx'):
    """
    Evaluate Yes/No classification performance with multiple metrics
    
    Args:
        model_results_paths: List of paths to model result JSON files
        data_path: Path to ground truth data Excel file
    """
    # Load ground truth labels
    true_labels = pd.read_excel(data_path, sheet_name='Yes or No Train')

    for model_results_path in model_results_paths:
        # Load model generated results
        model_results = pd.read_json(model_results_path)

        # Extract predictions and true labels
        predicted = model_results['answer'].apply(lambda x: 1 if x == 'Yes' else 0)
        true = true_labels['Answer'].apply(lambda x: 1 if x == 'Yes' else 0)

        # Calculate evaluation metrics
        accuracy = accuracy_score(true, predicted)
        recall = recall_score(true, predicted)
        precision = precision_score(true, predicted)
        f1 = f1_score(true, predicted)

        # Calculate AUROC
        predicted_prob = predicted  # Can be adjusted based on actual use case
        auroc = roc_auc_score(true, predicted_prob)

        # Format and save results
        results = (
            f'Model {model_results_path} evaluation results:\n'
            f'Accuracy: {accuracy:.4f}\n'
            f'Recall: {recall:.4f}\n'
            f'Precision: {precision:.4f}\n'
            f'F1 Score: {f1:.4f}\n'
            f'AUROC: {auroc:.4f}\n'
            '---\n'
        )
        
        # Save results to file
        save_path = './output/Task2'
        results_file_path = os.path.join(save_path, 'results_yes_or_no.txt')
        with open(results_file_path, 'a', encoding='utf-8') as f:
            f.write(results)
        print(results)

def calculate_metrics_Factoid(model_results_paths, data_path='./data/Task2/data.xlsx'):
    """
    Comprehensive evaluation for factoid question answering using BERT Score and METEOR
    
    Args:
        model_results_paths: List of paths to model result JSON files
        data_path: Path to ground truth data Excel file
    """
    # Load ground truth labels
    true_labels = pd.read_excel(data_path, sheet_name='Factoid Train')
    
    for model_results_path in model_results_paths:
        # Load model generated results
        model_results = pd.read_json(model_results_path)
        
        # Preprocess answers into lists
        predictions = []
        references = []
        
        for pred, ref in zip(model_results['answer'], true_labels['Answer']):
            # Handle null values, convert to string, remove spaces
            pred = str(pred).strip() if not pd.isna(pred) else ""
            ref = str(ref).strip() if not pd.isna(ref) else ""
            
            predictions.append(pred)
            references.append(ref)
            
        # 1. Calculate BERT Score
        P, R, F1 = score_bert(predictions, references, lang='zh', verbose=False)
        bert_precision = P.mean().item()
        bert_recall = R.mean().item()
        bert_f1 = F1.mean().item()
        
        # 2. Calculate METEOR Score and related metrics
        meteor_scores = []
        meteor_precision_scores = []
        meteor_recall_scores = []
        meteor_penalty_scores = []
        weighted_harmonic_means = []
        
        # METEOR parameters
        ALPHA = 0.9  # Precision weight
        BETA = 3.0   # Chunk penalty weight
        GAMMA = 0.5  # Penalty factor
        
        empty_pred = []
        
        for pred, ref in zip(predictions, references):
            # Check if original answer is empty
            if not pred:
                empty_pred.append(pred)
                print(f"Warning: Found empty prediction. Original prediction: {pred}, Reference: {ref}")
            
            # Tokenize using jieba
            pred_tokens = list(jieba.cut(pred))
            ref_tokens = list(jieba.cut(ref))
            
            # Clean tokenization results, remove spaces
            pred_tokens = [token for token in pred_tokens if token.strip()]
            ref_tokens = [token for token in ref_tokens if token.strip()]
            
            # Basic METEOR score
            meteor = single_meteor_score(ref_tokens, pred_tokens)

            # Use Counter to handle duplicate words
            pred_counter = Counter(pred_tokens)
            ref_counter = Counter(ref_tokens)
            
            matched_count = sum((pred_counter & ref_counter).values())
            
            precision = matched_count / len(pred_tokens) if pred_tokens else 0
            recall = matched_count / len(ref_tokens) if ref_tokens else 0

            # Calculate weighted harmonic mean
            if precision > 0 and recall > 0:
                weighted_harmonic_mean = (precision * recall) / (ALPHA * precision + (1 - ALPHA) * recall)
            else:
                weighted_harmonic_mean = 0

            # Calculate penalty score
            if weighted_harmonic_mean != 0:
                meteor_penalty_score = 1 - (meteor / weighted_harmonic_mean)
            else:
                meteor_penalty_score = 1

            meteor_penalty_scores.append(meteor_penalty_score)
            weighted_harmonic_means.append(weighted_harmonic_mean)
            meteor_precision_scores.append(precision)
            meteor_recall_scores.append(recall)
            meteor_scores.append(meteor)

        # Calculate average scores
        avg_meteor_precision = sum(meteor_precision_scores) / len(meteor_precision_scores) if meteor_precision_scores else 0
        avg_meteor_recall = sum(meteor_recall_scores) / len(meteor_recall_scores) if meteor_recall_scores else 0 
        ave_Fmean = sum(weighted_harmonic_means) / len(weighted_harmonic_means) if weighted_harmonic_means else 0
        avg_meteor_penalty = sum(meteor_penalty_scores) / len(meteor_penalty_scores) if meteor_penalty_scores else 0
        avg_meteor = sum(meteor_scores) / len(meteor_scores) if meteor_scores else 0
        
        # Empty prediction rate
        empty_pred_rate = len(empty_pred) / len(predictions)
        
        # Format and save results
        results = (
            f'Model {model_results_path} evaluation results:\n'
            f'\nBERT Score evaluation results:\n'
            f'BERT Precision: {bert_precision:.4f}\n'
            f'BERT Recall: {bert_recall:.4f}\n'
            f'BERT F1: {bert_f1:.4f}\n'
            f'\nMETEOR Score evaluation results:\n'
            f'METEOR Precision: {avg_meteor_precision:.4f}\n'
            f'METEOR Recall: {avg_meteor_recall:.4f}\n'
            f'METEOR Fmean: {ave_Fmean:.4f}\n'
            f'METEOR Penalty (Gamma={GAMMA:.1f},β={BETA:.1f}): {avg_meteor_penalty:.4f}\n'
            f'METEOR Score: {avg_meteor:.4f}\n'
            f'Empty prediction rate: {empty_pred_rate:.4f}\n'
            '---\n'
        )
        
        save_path = './output/Task2'
        results_file_path = os.path.join(save_path, 'results_factoid.txt')
        with open(results_file_path, 'a', encoding='utf-8') as f:
            f.write(results)
        print(results)

if __name__ == '__main__':
    # Configure model result paths for evaluation
    Factoid_results_paths = [
        # GPT-3.5-turbo eight tests
        './output/Task2/nomal/zero_shot/gpt-3.5-turbo_f.json',
        './output/Task2/nomal/one_shot/gpt-3.5-turbo_f.json',
        './output/Task2/nomal/two_shot/gpt-3.5-turbo_f.json',
        './output/Task2/nomal/three_shot/gpt-3.5-turbo_f.json',
        './output/Task2/knn/one_shot/gpt-3.5-turbo_f.json',
        './output/Task2/knn/two_shot/gpt-3.5-turbo_f.json',
        './output/Task2/knn/three_shot/gpt-3.5-turbo_f.json',
        './output/Task2/cot/cot_new/gpt-3.5-turbo_f_processed.json',
        
        # GPT-4o eight tests
        './output/Task2/nomal/zero_shot/gpt-4o_f.json',
        './output/Task2/nomal/one_shot/gpt-4o_f.json',
        './output/Task2/nomal/two_shot/gpt-4o_f.json',
        './output/Task2/nomal/three_shot/gpt-4o_f.json',
        './output/Task2/knn/one_shot/gpt-4o_f.json',
        './output/Task2/knn/two_shot/gpt-4o_f.json',
        './output/Task2/knn/three_shot/gpt-4o_f.json',
        './output/Task2/cot/cot_new/gpt-4o_f_processed.json',
        
        # Additional models...
        './output/Task2/nomal/zero_shot/gemini-1.5-pro-002_f.json',
        './output/Task2/nomal/zero_shot/claude-3-5-haiku-20241022_f.json',
        './output/Task2/nomal/zero_shot/deepseek-ai/DeepSeek-V3_f.json',
    ]
    
    data_path = './data/Task2/data.xlsx'
    calculate_metrics_Factoid(Factoid_results_paths, data_path)
\end{minted}

\newpage
The tasks/task2/utils/save_response.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
import json
import pandas as pd
import os

def save_responses(type, index, response, output_file, raw_output_file):
    """
    Save model responses to JSON files with structured format
    
    Args:
        type: Type of task ('yes_no' or 'factoid')
        index: Index of the current question
        response: Model response object
        output_file: Path to save processed responses
        raw_output_file: Path to save raw responses
    """
    # Load training data based on task type
    data_path = '../../data/Task2/data.xlsx'
    if type == 'yes_no':
        sheet = 'Yes or No Train'
    elif type == 'factoid':
        sheet = 'Factoid Train'
    
    data_train = pd.read_excel(data_path, sheet_name=sheet)
    question_train = data_train['Question']
    
    # Parse response type and extract content
    if hasattr(response, 'content'):  # For ChatCompletionMessage objects
        content = response.content
    elif isinstance(response, dict) and 'content' in response:  # For dictionary format
        content = response['content']
    else:
        content = "Invalid response format"  # Handle invalid responses

    # Create dictionary to save
    result = {
        "question": question_train[index],
        "answer": content
    }
    
    # Load existing data if file exists
    if os.path.exists(output_file):
        with open(output_file, 'r', encoding='utf-8') as f:
            existing_data = json.load(f)
    else:
        existing_data = []

    # Append new result to existing data
    existing_data.append(result)

    # Save model responses as JSON file
    with open(output_file, 'w', encoding='utf-8') as f:
        json.dump(existing_data, f, ensure_ascii=False, indent=4)

    # Save raw response as JSON file
    raw_response = {
        "question": question_train[index],
        "raw_response": str(response)  # Convert object to string
    }
    
    if os.path.exists(raw_output_file):
        with open(raw_output_file, 'r', encoding='utf-8') as f:
            existing_raw_data = json.load(f)
    else:
        existing_raw_data = []

    # Append new raw response to existing data
    existing_raw_data.append(raw_response)

    with open(raw_output_file, 'w', encoding='utf-8') as f:
        json.dump(existing_raw_data, f, ensure_ascii=False, indent=4)

def save_responses_knn(prompt, type, index, response, output_file, raw_output_file):
    """
    Save KNN-enhanced model responses with prompt information
    
    Args:
        prompt: The input prompt used for generation
        type: Type of task ('yes_no' or 'factoid')
        index: Index of the current question
        response: Model response object
        output_file: Path to save processed responses
        raw_output_file: Path to save raw responses with prompts
    """
    # Load training data based on task type
    data_path = '../../data/Task2/data.xlsx'
    if type == 'yes_no':
        sheet = 'Yes or No Train'
    elif type == 'factoid':
        sheet = 'Factoid Train'
    
    data_train = pd.read_excel(data_path, sheet_name=sheet)
    question_train = data_train['Question']
    
    # Parse response type and extract content
    if hasattr(response, 'content'):  # For ChatCompletionMessage objects
        content = response.content
    elif isinstance(response, dict) and 'content' in response:  # For dictionary format
        content = response['content']
    else:
        content = "Invalid response format"  # Handle invalid responses

    # Create dictionary to save processed response
    result = {
        "question": question_train[index],
        "answer": content
    }
    
    # Load existing processed data if file exists
    if os.path.exists(output_file):
        with open(output_file, 'r', encoding='utf-8') as f:
            existing_data = json.load(f)
    else:
        existing_data = []

    # Append new result to existing data
    existing_data.append(result)

    # Save processed model responses as JSON file
    with open(output_file, 'w', encoding='utf-8') as f:
        json.dump(existing_data, f, ensure_ascii=False, indent=4)

    # Save raw response with prompt information
    raw_response = {
        "prompt": prompt,
        "raw_response": str(response)  # Convert object to string
    }
    
    if os.path.exists(raw_output_file):
        with open(raw_output_file, 'r', encoding='utf-8') as f:
            existing_raw_data = json.load(f)
    else:
        existing_raw_data = []

    # Append new raw response to existing data
    existing_raw_data.append(raw_response)

    with open(raw_output_file, 'w', encoding='utf-8') as f:
        json.dump(existing_raw_data, f, ensure_ascii=False, indent=4)
\end{minted}

\newpage
The tasks/task2/utils/promp_get.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
def get_prompt(ask_name, shot_type):
    """
    Generate prompts for geological question answering with different shot configurations
    
    Args:
        ask_name: Type of question ('yes_no' or 'factoid')
        shot_type: Number of examples ('zero_shot', 'one_shot', 'two_shot', 'three_shot')
    
    Returns:
        List of prompts for the specified configuration
    """
    import pandas as pd
    import random
    
    if ask_name == 'yes_no':
        # Set paths for Yes/No classification data
        data_path = '../../data/Task2/data.xlsx'
        sheet_train = 'Yes or No Train'
        sheet_test = 'Yes or No Test'   
        
        # Load data
        data_train = pd.read_excel(data_path, sheet_name=sheet_train)
        data_test = pd.read_excel(data_path, sheet_name=sheet_test)
        
        # Extract questions, texts, and answers
        question_train = data_train['Question']
        text_train = data_train['Text']
        answer_train = data_train['Answer']
        question_test = data_test['Question']
        text_test = data_test['Text']
        answer_test = data_test['Answer']
        
        # Generate prompts based on shot type
        if shot_type == 'zero_shot':
            prompt = '''
Please answer the question based on the given text.
Given text: "''' + text_train + '''"''' + '\n' + '''Question: "''' + question_train + '''"
Please answer directly with Yes or No.
            '''
        elif shot_type == 'one_shot':
            # Randomly select one example
            random_index = random.randint(0, len(data_test)-1)
            example = 'Text: ' + str(text_test[random_index]) + '\n' + 'Question: ' + str(question_test[random_index]) + '\n' + 'Answer: ' + str(answer_test[random_index])
            prompt = '''
Please answer the question based on the given text.
            ''' + '\n' + '''Example:''' + '\n' + example + '''
            ''' + '\n' + '''Given text: "''' + text_train + '''"''' + '\n' + '''Question: "''' + question_train + '"' + '''
Please answer directly with Yes or No.
            ''' 
        elif shot_type == 'two_shot':
            # Randomly select two examples
            random_index1 = random.randint(0, len(data_test)-1)
            random_index2 = random.randint(0, len(data_test)-1)
            while random_index2 == random_index1:
                random_index2 = random.randint(0, len(data_test)-1)
            
            example1 = 'Text: ' + str(text_test[random_index1]) + '\n' + 'Question: ' + str(question_test[random_index1]) + '\n' + 'Answer: ' + str(answer_test[random_index1])
            example2 = 'Text: ' + str(text_test[random_index2]) + '\n' + 'Question: ' + str(question_test[random_index2]) + '\n' + 'Answer: ' + str(answer_test[random_index2])
            
            prompt = '''
Please answer the question based on the given text.
            ''' + '\n' + '''Example 1:''' + '\n' + example1 + '''
            ''' + '\n' + '''Example 2:''' + '\n' + example2 + '''
            ''' + '\n' + '''Given text: "''' + text_train + '''"''' + '\n' + '''Question: "''' + question_train + '"' + '''
Please answer directly with Yes or No.
            '''
        elif shot_type == 'three_shot':
            # Randomly select three examples
            random_index1 = random.randint(0, len(data_test)-1)
            random_index2 = random.randint(0, len(data_test)-1)
            random_index3 = random.randint(0, len(data_test)-1)
            while random_index3 == random_index1 or random_index3 == random_index2:
                random_index3 = random.randint(0, len(data_test)-1)
            
            example1 = 'Text: ' + str(text_test[random_index1]) + '\n' + 'Question: ' + str(question_test[random_index1]) + '\n' + 'Answer: ' + str(answer_test[random_index1])
            example2 = 'Text: ' + str(text_test[random_index2]) + '\n' + 'Question: ' + str(question_test[random_index2]) + '\n' + 'Answer: ' + str(answer_test[random_index2])
            example3 = 'Text: ' + str(text_test[random_index3]) + '\n' + 'Question: ' + str(question_test[random_index3]) + '\n' + 'Answer: ' + str(answer_test[random_index3])
            
            prompt = '''
Please answer the question based on the given text.
            ''' + '\n' + '''Example 1:''' + '\n' + example1 + '''
            ''' + '\n' + '''Example 2:''' + '\n' + example2 + '''
            ''' + '\n' + '''Example 3:''' + '\n' + example3 + '''
            ''' + '\n' + '''Given text: "''' + text_train + '''"''' + '\n' + '''Question: "''' + question_train + '"' + '''
Please answer directly with Yes or No.
            '''
            
    elif ask_name == 'factoid': 
        # Set paths for factoid question data
        data_path = '../../data/Task2/data.xlsx'
        sheet_train = 'Factoid Train'
        sheet_test = 'Factoid Test'
        
        # Load data
        data_train = pd.read_excel(data_path, sheet_name=sheet_train)
        data_test = pd.read_excel(data_path, sheet_name=sheet_test)
        
        # Extract questions, texts, and answers
        question_train = data_train['Question']
        text_train = data_train['Text']
        answer_train = data_train['Answer']
        question_test = data_test['Question']
        text_test = data_test['Text']
        answer_test = data_test['Answer']
        
        # Generate prompts based on shot type (similar structure to yes_no)
        if shot_type == 'zero_shot':
            prompt = '''
Please answer the question based on the given text.
Given text: "''' + text_train + '"' + '\n' + '''Question: "''' + question_train + '''"
Please answer the question directly.
            ''' 
        # ... (similar implementation for one_shot, two_shot, three_shot)
        
    return prompt

if __name__ == '__main__':
    # Test prompt generation
    prompt = get_prompt('yes_no', 'zero_shot')
    print('--------------------------------')
    print(len(prompt))
    print(prompt[0])
\end{minted}

\newpage
The tasks/task2/utils/knn_prompt.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}
import json

def generate_prompt(type, json_path, example_num=3):
    """
    Generate prompts using K-nearest neighbor examples for improved context-aware questioning
    
    Args:
        type: Type of task ('yes_no' or 'factoid')
        json_path: Path to JSON file containing KNN search results
        example_num: Number of examples to include in prompt (default: 3)
    
    Returns:
        List of generated prompts with KNN examples
    """
    with open(json_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    
    prompts = []
    
    for item in data:
        test_query = item['test_query']
        matched_samples = item['matched_samples'][:example_num]  # Control number of examples
        
        # Build prompt with examples
        prompt = f'Please answer the question based on the given text.\nExamples:\n'
        
        for sample in matched_samples:
            prompt += f'Given text: "{sample["context"]}".\nQuestion: "{sample["question"]}".\nAnswer: "{sample["answer"]}"\n\n'
        
        # Add task-specific instruction
        if type == 'yes_no':
            prompt += f'Given text: "{test_query["text"]}".\nQuestion: "{test_query["question"]}"\nPlease answer directly with Yes or No.'
        elif type == 'factoid':
            prompt += f'Given text: "{test_query["text"]}".\nQuestion: "{test_query["question"]}"\nPlease answer the question directly.'
        
        prompts.append(prompt)
    
    return prompts

def generate_prompt_cot(type, json_path):
    """
    Generate chain-of-thought prompts for enhanced reasoning
    
    Args:
        type: Type of task ('yes_no' or 'factoid')
        json_path: Path to JSON file containing test queries
    
    Returns:
        List of CoT prompts that encourage step-by-step reasoning
    """
    with open(json_path, 'r', encoding='utf-8') as f:
        data = json.load(f)
    
    prompts = []
    
    for item in data:
        test_query = item['test_query']
        
        # Build chain-of-thought prompt
        prompt = f'Please answer the question based on the given text.\n'
        
        if type == 'yes_no':
            prompt += f'Given text: "{test_query["text"]}".\nQuestion: "{test_query["question"]}"\nPlease first answer Yes or No, then provide your reasoning basis.'
        elif type == 'factoid':
            prompt += f'Given text: "{test_query["text"]}".\nQuestion: "{test_query["question"]}"\nPlease first answer the question, then provide your reasoning basis.'
        
        prompts.append(prompt)
    
    return prompts

if __name__ == "__main__":
    # Usage examples
    
    # Test CoT prompt generation for Yes/No questions
    prompts = generate_prompt_cot('yes_no', './data/Task2/knn_yes_no.json')
    print("Chain-of-Thought Prompts for Yes/No:")
    for i, prompt in enumerate(prompts):
        print(f'Prompt {i+1}:\n{prompt}\n')
        if i >= 1:  # Print first two examples
            break

    # Test KNN prompt generation for Factoid questions
    prompts = generate_prompt('factoid', './data/Task2/knn_factoid.json', example_num=1)
    print('\nKNN Prompts for Factoid:')
    for i, prompt in enumerate(prompts):
        print(f'Prompt {i+1}:\n{prompt}\n')
        if i >= 1:  # Print first two examples
            break
\end{minted}