Spaces:
Runtime error
Runtime error
File size: 4,909 Bytes
badcf3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
from openai import OpenAI
import os
import pandas as pd
import google.generativeai as genai
import requests
# 输入模型系列和内容
def zero_shot(model_series, model_name, content):
# 读取txt文件
df = pd.read_csv('./LLM_APIs_special_for_0423.txt')
# 由于列名包含制表符,需要先分割列名
df = pd.DataFrame([x.split('\t') for x in df.values.flatten()], columns=['name','API'])
# 获取对应的API密钥
api_key = df[df['name'] == model_series]['API'].values[0]
# 根据不同模型系列调用不同API
if model_series == 'gpt3':
client = OpenAI(
api_key=api_key,
base_url="https://api.bianxie.ai/v1"
)
completion = client.chat.completions.create(
model = model_name,
messages=[
{
"role": "user",
"content": content
}
]
)
return completion.choices[0].message
elif model_series == 'gpt4':
client = OpenAI(
api_key=api_key,
base_url="https://api.bianxie.ai/v1"
)
completion = client.chat.completions.create(
model = model_name,
messages=[
{
"role": "user",
"content": content
}
]
)
return completion.choices[0].message
elif model_series == 'gpt_R1':
client = OpenAI(
api_key=api_key,
base_url="https://api.bianxie.ai/v1"
)
completion = client.chat.completions.create(
model = model_name,
messages=[
{
"role": "user",
"content": content
}
]
)
return completion.choices[0].message
elif model_series == 'gemini':
# genai.configure(api_key=api_key)
# model = genai.GenerativeModel(model_name)
# response = model.generate_content(content)
# print(response.text)
# return response.text
api_key = api_key
url = 'https://api.bianxie.ai/v1/chat/completions'
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {api_key}'
}
data = {
'model': model_name,
'messages': [{'role': 'user', 'content': content}],
}
response = requests.post(url, headers=headers, json=data)
content = response.json()['choices'][0]['message']
return content
elif model_series == 'claude':
api_key = api_key
url = 'https://api.bianxie.ai/v1/chat/completions'
headers = {
'Content-Type': 'application/json',
'Authorization': f'Bearer {api_key}'
}
data = {
'model': model_name,
'messages': [{'role': 'user', 'content': content}],
}
response = requests.post(url, headers=headers, json=data)
content = response.json()['choices'][0]['message']
return content
elif model_series == 'llama':
client = OpenAI(api_key=api_key,
base_url="https://api.studio.nebius.ai/v1")
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "user", "content": content},
],
stream=False
)
return response.choices[0].message.content
elif model_series == 'qwen':
client = OpenAI(api_key=api_key,
base_url="https://api.studio.nebius.ai/v1")
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "user", "content": content},
],
stream=False
)
return response.choices[0].message.content
elif model_series == 'deepSeek':
client = OpenAI(api_key=api_key,
base_url="https://api.studio.nebius.ai/v1")
response = client.chat.completions.create(
model=model_name,
messages=[
{"role": "user", "content": content},
],
stream=False
)
# client = OpenAI(api_key=api_key,
# base_url="https://api.deepseek.com")
# response = client.chat.completions.create(
# model=model_name,
# messages=[
# {"role": "user", "content": content},
# ],
# stream=False
# )
return response.choices[0].message.content
else:
return "不支持的模型系列"
|