File size: 4,909 Bytes
badcf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from openai import OpenAI
import os
import pandas as pd
import google.generativeai as genai
import requests

# 输入模型系列和内容
def zero_shot(model_series, model_name, content):
    # 读取txt文件
    df = pd.read_csv('./LLM_APIs_special_for_0423.txt')
    # 由于列名包含制表符,需要先分割列名
    df = pd.DataFrame([x.split('\t') for x in df.values.flatten()], columns=['name','API'])
    # 获取对应的API密钥
    api_key = df[df['name'] == model_series]['API'].values[0]
    
    # 根据不同模型系列调用不同API
    if model_series == 'gpt3':
        client = OpenAI(
            api_key=api_key,
            base_url="https://api.bianxie.ai/v1"
        )
        completion = client.chat.completions.create(
            model = model_name,
            messages=[
                {
                    "role": "user",
                    "content": content
                }
            ]
        )
        return completion.choices[0].message
    elif model_series == 'gpt4':
        client = OpenAI(
            api_key=api_key,
            base_url="https://api.bianxie.ai/v1"
        )
        completion = client.chat.completions.create(
            model = model_name,
            messages=[
                {
                    "role": "user",
                    "content": content
                }
            ]
        )
        return completion.choices[0].message
    
    elif model_series == 'gpt_R1':
        client = OpenAI(
            api_key=api_key,
            base_url="https://api.bianxie.ai/v1"
        )
        completion = client.chat.completions.create(
            model = model_name,
            messages=[
                {
                    "role": "user",
                    "content": content
                }
            ]
        )
        return completion.choices[0].message
            
    elif model_series == 'gemini':
        # genai.configure(api_key=api_key)
        # model = genai.GenerativeModel(model_name)
        # response = model.generate_content(content)
        # print(response.text)
        # return response.text
        api_key = api_key
        url = 'https://api.bianxie.ai/v1/chat/completions'
        headers = {
            'Content-Type': 'application/json',
            'Authorization': f'Bearer {api_key}'
        }
        data = {
            'model': model_name,
            'messages': [{'role': 'user', 'content': content}],
        }
        response = requests.post(url, headers=headers, json=data)
        content = response.json()['choices'][0]['message']
        return content
    
    elif model_series == 'claude':
        api_key = api_key
        url = 'https://api.bianxie.ai/v1/chat/completions'

        headers = {
            'Content-Type': 'application/json',
            'Authorization': f'Bearer {api_key}'
        }

        data = {
            'model': model_name,
            'messages': [{'role': 'user', 'content': content}],
        }

        response = requests.post(url, headers=headers, json=data)
        content = response.json()['choices'][0]['message']
        return content

    elif model_series == 'llama':

        client = OpenAI(api_key=api_key,
                         base_url="https://api.studio.nebius.ai/v1")

        response = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "user", "content": content},
            ],
            stream=False
        )
        return response.choices[0].message.content
    
    elif model_series == 'qwen':

        client = OpenAI(api_key=api_key,
                         base_url="https://api.studio.nebius.ai/v1")

        response = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "user", "content": content},
            ],
            stream=False
        )
        return response.choices[0].message.content
    
    elif model_series == 'deepSeek':

        client = OpenAI(api_key=api_key,
                         base_url="https://api.studio.nebius.ai/v1")

        response = client.chat.completions.create(
            model=model_name,
            messages=[
                {"role": "user", "content": content},
            ],
            stream=False
        )
        # client = OpenAI(api_key=api_key,
        #                  base_url="https://api.deepseek.com")

        # response = client.chat.completions.create(
        #     model=model_name,
        #     messages=[
        #         {"role": "user", "content": content},
        #     ],
        #     stream=False
        # )

        return response.choices[0].message.content
    
    else:
        return "不支持的模型系列"