Spaces:
Runtime error
Runtime error
File size: 39,933 Bytes
badcf3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
import json, time
import numpy as np
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from pytorch_pretrained_bert import BertModel, BertTokenizer
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
# import paddle
# import paddle.nn.functional as F
import unicodedata
from pyhanlp import *
from torch_geometric.nn import RGCNConv
from gcn import *
from graphModule import *
from einops import rearrange
from config import args
from biaffine import *
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# DEVICE = torch.device("cpu")
# BERT_PATH = "./SpanBERT/Spanbert-base-cased"
# BERT_PATH = "./chinese_roberta_wwm_ext_pytorch"
BERT_PATH = "./bert"
maxlen = 256 ####256
def load_data(filename):
D = []
with open(filename) as data_file:
data = data_file.read()
# print(data)
data = json.loads(data)
for item in data:
d = {'text': item['text'], 'triple_list': []}
for sub_item in item['triple_list']:
d['triple_list'].append(
(sub_item[0], sub_item[1], sub_item[2])
)
D.append(d)
return D
# 加载数据集
train_data = load_data('./data/CMED/train_triples.json')
valid_data = load_data('./data/CMED/dev_triples.json')
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
train_data_new = [] # 创建新的训练集,把结束位置超过250的文本去除,可见并没有去除多少
for data in tqdm(train_data):
# print (data)
flag = 1
for s, p, o in data['triple_list']:
s_begin = search(s, data['text'])
o_begin = search(o, data['text'])
if s_begin == -1 or o_begin == -1 or s_begin + len(s) > 256 or o_begin + len(o) > 256:
flag = 0
break
if flag == 1:
train_data_new.append(data)
print("去除大于250的文本:\t", len(train_data_new))
# 读取schema
'''
with open('RE/data/schema.json', encoding='utf-8') as f:
id2predicate, predicate2id, n = {}, {}, 0
predicate2type = {}
for l in f:
l = json.loads(l)
predicate2type[l['predicate']] = (l['subject_type'], l['object_type'])
for k, _ in sorted(l['object_type'].items()):
key = l['predicate'] + '_' + k
id2predicate[n] = key
predicate2id[key] = n
n += 1
print(len(predicate2id))
'''
with open('./data/CMED/rel2id.json', encoding='utf-8') as f:
# id2predicate, predicate2id, n = {}, {}, 0
l = json.load(f)
id2predicate = l[0]
predicate2id = l[1]
print("关系类型数量:\t", len(predicate2id))
class OurTokenizer(BertTokenizer):
def tokenize(self, text):
R = []
for c in text:
if c in self.vocab:
R.append(c)
elif self._is_whitespace(c):
R.append('[unused1]')
else:
R.append('[UNK]')
return R
def _is_whitespace(self, char):
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
# 初始化分词器
tokenizer = OurTokenizer(vocab_file="./chinese_roberta_wwm_ext_pytorch/vocab.txt")
######依存句法树+分词
def seg_pos(text):
head, seg_word, Dep_rel, str_le = [], [], [], []
# tree = HanLP.parseDependency(text)
parser = JClass('com.hankcs.hanlp.dependency.nnparser.NeuralNetworkDependencyParser')()
parser.enableDeprelTranslator(False)
tree = parser.parse(text)
for word in tree.iterator(): # 通过dir()可以查看sentence的方法
head.append(word.HEAD.ID)
for i in word.LEMMA.split():
str_le.append(i)
seg_word.append(word.LEMMA)
Dep_rel.append(word.DEPREL)
return head, seg_word, Dep_rel, str_le
def out_list_word(seg_word):
temp = ""
for word in seg_word:
temp += " " + word
text_out = temp.lstrip(" ")
return text_out
def map_to_ids(tokens, vocab):
ids = [vocab[t] if t in vocab.keys() else 0 for t in tokens]
return ids
def vocab_json():
vocab_out = json.load(open("./vacab.json"))
return vocab_out
def dep_json():
dep_out = json.load(open("./dep.json"))
return dep_out
class TorchDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, i):
t = self.data[i]
# print ('t!!!',t) ######{'text': '齐志江,男,汉族,中共党员,大学学历', 'triple_list': [('齐志江', '民族', '汉族')]}
x = tokenizer.tokenize(t['text'])
# print (x)
x = ["[CLS]"] + x + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(x)
seg_ids = [0] * len(token_ids)
assert len(token_ids) == len(t['text']) + 2
spoes = {}
for s, p, o in t['triple_list']:
s = tokenizer.tokenize(s)
s = tokenizer.convert_tokens_to_ids(s)
p = predicate2id[p]
o = tokenizer.tokenize(o)
o = tokenizer.convert_tokens_to_ids(o)
s_idx = search(s, token_ids)
o_idx = search(o, token_ids)
if s_idx != -1 and o_idx != -1:
s = (s_idx, s_idx + len(s) - 1)
o = (o_idx, o_idx + len(o) - 1, p) # 同时预测o和p
if s not in spoes:
spoes[s] = []
spoes[s].append(o)
# print(spoes) {(2, 5): [(13, 15, 31), (19, 21, 38), (29, 31, 45)]}
if spoes:
sub_labels = np.zeros((len(token_ids), 2))
# print (sub_labels)
for s in spoes:
# print (s) #(2, 5)
# print (sub_labels)
# print(s[0])
sub_labels[s[0], 0] = 1
sub_labels[s[1], 1] = 1
# 随机选一个subject
start, end = np.array(list(spoes.keys())).T
start = np.random.choice(start)
# print (start)
end = sorted(end[end >= start])[0]
sub_ids = (start, end)
obj_labels = np.zeros((len(token_ids), len(predicate2id), 2))
for o in spoes.get(sub_ids, []):
# print (o)
obj_labels[o[0], o[2], 0] = 1
obj_labels[o[1], o[2], 1] = 1
token_ids = self.sequence_padding(token_ids, maxlen=maxlen)
seg_ids = self.sequence_padding(seg_ids, maxlen=maxlen)
sub_labels = self.sequence_padding(sub_labels, maxlen=maxlen, padding=np.zeros(2))
sub_ids = np.array(sub_ids)
obj_labels = self.sequence_padding(obj_labels, maxlen=maxlen,
padding=np.zeros((len(predicate2id), 2)))
return (torch.LongTensor(token_ids), torch.LongTensor(seg_ids), torch.LongTensor(sub_ids),
torch.LongTensor(sub_labels), torch.LongTensor(obj_labels))
def __len__(self):
data_len = len(self.data)
return data_len
def sequence_padding(self, x, maxlen, padding=0):
output = np.concatenate([x, [padding] * (maxlen - len(x))]) if len(x) < maxlen else np.array(x[:maxlen])
return output
train_dataset = TorchDataset(train_data_new)
train_loader = DataLoader(dataset=train_dataset, batch_size=args.batch1, shuffle=True, drop_last=True)
# for i, x in enumerate(train_loader):
# print([_.shape for _ in x])
# if i == 10:
# break
class GRUnet(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim, layer_dim, output_dim):
"""
vocab_size: 词典长度,也就是嵌入矩阵的行数
embedding_dim: 词向量的维度,也就是嵌入矩阵的列数,也是W的列数,也是输入GRU的x_t的维度
hidden_dim: GRU神经元的个数,也就是W的行数
layer_dim: GRU的层数
output_dim: 隐藏层输出的维度
"""
super(GRUnet, self).__init__()
# 嵌入层
self.embedding = nn.Embedding(vocab_size, embedding_dim)
# GRU + 全连接
self.gru = nn.GRU(embedding_dim, hidden_dim, layer_dim,
batch_first=True)
self.fc1 = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim),
nn.Dropout(0.5),
torch.nn.ReLU(),
nn.Linear(hidden_dim, output_dim)
)
def forward(self, x):
# x : [bacth, time_step, vocab_size]
embeds = self.embedding(x)
# print(embeds.shape)
# embeds : [batch, time_step, embedding_dim]
r_out, h_n = self.gru(embeds, None)
# print (r_out.shape)
# r_out : [batch, time_step, hidden_dim]
# out = self.fc1(r_out[:, -1, :])
out = self.fc1(r_out)
# out : [batch, time_step, output_dim]
return out
class GCN(nn.Module):
def __init__(self, hidden_size=768):
super(GCN, self).__init__()
self.hidden_size = hidden_size
# self.fc = nn.Linear(self.hidden_size, self.hidden_size // 2)
def forward(self, x, adj, is_relu=True):
out = x
# Make permutations for matrix multiplication
# Assuming batch_first = False
# print (out.shape)
# out = out.permute(1, 0, 2) # to: batch, seq_len, hidden
# adj = adj.permute(2, 0, 1) # to: batch, seq_len, seq_len
out = torch.bmm(adj, out) # .permute(1, 0, 2) # to: seq_len, batch, hidden
if is_relu == True:
out = F.relu(out)
return out
class RGCN(torch.nn.Module):
def __init__(self,in_channels,hideden_channels,out_channels,n_layers=2,dropout=0.5):
super().__init__()
self.convs = torch.nn.ModuleList()
self.norms = torch.nn.ModuleList()
self.relu = F.relu
self.dropout = dropout
self.convs.append(RGCNConv(in_channels,hideden_channels,num_relations=24,num_bases=1))
for i in range(n_layers-2):
self.convs.append(RGCNConv(hideden_channels,hideden_channels,num_relations=24,num_bases=1))
self.norms.append(torch.nn.BatchNormld(hideden_channels))
self.convs.append(RGCNConv(hideden_channels,out_channels,num_relations=24,num_bases=1))
def forward(self, x, edge_index=2561,edge_type=24):
for conv ,norm in zip(self.convs, self.norms):
x = norm(conv(x,2561,24))
x = F.relu(x)
x = F.dropout(x,p=self.dropout,training=self.training)
return x
class BertLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
super(BertLayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True) # [bs, maxlen, 1]
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class Attention2(nn.Module):
"""
1.输入 [batch_size,time_step,hidden_dim] -> Linear、Tanh
2.[batch_size,time_step,hidden_dim] -> transpose
3.[batch_size,hidden_dim,time_step] -> Softmax
4.[batch_size,hidden_dim,time_step] -> mean
5.[batch_size,time_step] -> unsqueeze
5.[batch_size,1,time_step] -> expand
6.[batch_size,hidden_dim,time_step] -> transpose
7.[batch_size,time_step,hidden_dim]
"""
def __init__(self, hidden_dim):
super(Attention2, self).__init__()
self.hidden_dim = hidden_dim
self.dense = nn.Linear(hidden_dim, hidden_dim)
def forward(self, features, mean=True):
batch_size, time_step, hidden_dim = features.size()
# weight = nn.Tanh()(self.dense(features))
weight = nn.ReLU()(self.dense(features))
# mask给负无穷使得权重为0
mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
mask_idx = mask_idx.unsqueeze(-1).expand(batch_size, time_step, hidden_dim)
paddings = torch.ones_like(mask_idx) * (-2 ** 32 + 1)
weight = torch.where(torch.eq(mask_idx, 1), weight, paddings)
weight = weight.transpose(2, 1)
# weight = nn.Softmax(dim=2)(weight)
# weight = nn.Sigmoid(weight)
if mean:
weight = weight.mean(dim=1)
weight = weight.unsqueeze(1)
weight = weight.expand(batch_size, hidden_dim, time_step)
weight = weight.transpose(2, 1)
features_attention = weight * features
return features_attention
class KeyValueMemoryNetwork(nn.Module):
def __init__(self, vocab_size, feature_vocab_size, emb_size):
super(KeyValueMemoryNetwork, self).__init__()
self.key_embedding = nn.Embedding(vocab_size, emb_size, padding_idx=0)
self.value_embedding = nn.Embedding(feature_vocab_size, emb_size, padding_idx=0)
self.scale = np.power(emb_size, 0.5)
def forward(self, key_embed, value_embed, hidden, mask_matrix):
# key_embed = self.key_embedding(key_seq)
# print (key_embed.shape)
# value_embed = self.value_embedding(value_seq)
# print (value_embed.shape)
# hidden = self.key_embedding(hidden)
u = torch.bmm(hidden.float(), key_embed.transpose(1, 2))
u = u / self.scale
exp_u = torch.exp(u)
# print ('exp_u',exp_u.shape)
delta_exp_u = torch.mul(exp_u.float(), mask_matrix.float())
sum_delta_exp_u = torch.stack([torch.sum(delta_exp_u, 2)] * delta_exp_u.shape[2], 2)
p = torch.div(delta_exp_u, sum_delta_exp_u + 1e-10)
# print ('exp_u',p.shape)(9,256,256)
# embedding_val = value_embed.permute(3, 0, 1, 2)
o = torch.mul(p.float(), value_embed.float())
# print (o.shape)
# o = o.permute(1, 2, 3, 0)
# o = torch.sum(o, 2)
# aspect_len = (o != 0).sum(dim=1)
# o = o.float().sum(dim=1)
# avg_o = torch.div(o, aspect_len)
return o # avg_o.type_as(hidden)
class REModel(nn.Module):
def __init__(self):
super(REModel, self).__init__()
self.bert = BertModel.from_pretrained(BERT_PATH)
for param in self.bert.parameters():
param.requires_grad = True
self.linear = nn.Linear(768, 768)
self.relu = nn.ReLU()
self.sub_output = nn.Linear(768, 2)
self.suopand = nn.Linear(1024, 768)
self.cat_output = nn.Linear(1024, 768)
self.obj_output = nn.Linear(768, len(predicate2id) * 2)
self.sub_pos_emb = nn.Embedding(256, 768) # subject位置embedding
self.layernorm = BertLayerNorm(768, eps=1e-12)
# self.GCN_model = GCNClassifier(opt, emb_matrix=None)
self.GRU = GRUnet(23923, 768, 1024, 6, 768)
# self.CRF_S = CRF_S(768, 16, if_bias=True)
# self.LSTM_CRF = LSTM_CRF(23922, 16, 768, 768, 1, 0.5, large_CRF=True)
self.biaffine = BiaffineTagger(768, 2)
# self.GCN = GCN(hidden_size=768)
self.attention2 = Attention2(hidden_dim=768)
self.gcu1 = GraphConv1(batch=args.batch1, h=[16, 32, 64, 128, 256], w=[16, 32, 64, 128, 256], d=[768, 512],
V=[2, 4, 8, 32], outfeatures=[256, 128])
# self.gcu2 = GraphConv2(batch = args.batch2, h=[16,32,64,128,256], w=[16,32,64,128,256], d=[768,512], V=[2,4,8,32],outfeatures=[256,128])
self.cov = nn.Conv2d(768, 768, 1)
self.GCN_model = GCNClassifier(opt, emb_matrix=None)
self.emb = nn.Embedding(23923, 768)
self.emb1 = nn.Embedding(37, 256)
self.keyvalue = KeyValueMemoryNetwork(23923, 23923, 768)
# self.apnb = APNB(in_channels=768, out_channels=768, key_channels=256, value_channels=256,dropout=0.05, sizes=([1]))
def forward(self, token_ids, seg_ids, sub_ids=None):
out, _ = self.bert(token_ids, token_type_ids=seg_ids,
output_all_encoded_layers=False) # [batch_size, maxlen, size]
# print ("1",out.shape)
out = self.attention2(out)
# print("1", out.shape)
sub_preds = self.sub_output(out) # [batch_size, maxlen, 2]
sub_preds = torch.sigmoid(sub_preds)
# sub_preds = sub_preds ** 2
if sub_ids is None:
return sub_preds
# print(sub_ids)
# print(sub_ids[:, :1])
# 融入subject特征信息
sub_pos_start = self.sub_pos_emb(sub_ids[:, :1]) # 取主实体首位置
sub_pos_end = self.sub_pos_emb(sub_ids[:, 1:]) # [batch_size, 1, size] #取主实体尾位置
# print(sub_pos_start)
sub_id1 = sub_ids[:, :1].unsqueeze(-1).repeat(1, 1, out.shape[-1]) # subject开始的位置id 重复字编码次数
# print (sub_id1)
sub_id2 = sub_ids[:, 1:].unsqueeze(-1).repeat(1, 1, out.shape[-1]) # [batch_size, 1, size]
sub_start = torch.gather(out, 1, sub_id1) # 按照sub_id1位置索引去找bert编码后的值,在列维度进行索引
# print(sub_start.shape)
sub_end = torch.gather(out, 1, sub_id2) # [batch_size, 1, size]
sub_start = sub_pos_start + sub_start # 位置编码向量+bert字编码向量
sub_end = sub_pos_end + sub_end
out1 = out + sub_start + sub_end
out1 = torch.reshape(out1, (-1, 16, 16, 768))
# print ('out1:',out1.shape)
out1 = out1.permute(0, 3, 1, 2)
# print(out1.shape)
# out1 = HGT(in_channels=1, hidden_channels=5, out_channels=2, n_layers=2, n_heads=3)(out1)
out1 = RGCN(in_channels=1, hideden_channels=5, out_channels=2, n_layers=2, dropout=0.5)(out1)
# print(1)out1 = RGCN(in_channels=1, hideden_channels=5, out_channels=2, n_layers=2, dropout=0.5)(out1)
# print(out1.shape)
# print(1)
# print(out1.shape)
# if out1.shape[0] == args.batch1:
# out1 = self.gcu1(out1)
# # word_re_embed,_ = self.LSTM_CRF(inputs[0],hidden=None,t = True)
# else:
# out1 = GraphConv2(batch=out1.shape[0], h=[16, 32, 64, 128, 256], w=[16, 32, 64, 128, 256], d=[768, 512],
# V=[2, 4, 8, 32], outfeatures=[256, 128])(out1)
# # word_re_embed,_ = LSTM_CRF1(23922, 16, 768, 768, 1, 0.5, large_CRF=True, t = out1.shape[0]).to(DEVICE)(inputs[0],hidden=None)
# print ('out1_',out1.shape)
out1 = self.cov(out1)
# out1 = self.apnb(out1)
# out = out.permute(0,2,3,1)
# print (out.shape)
# b, c, h, w = out1.shape
out1 = rearrange(out1, 'b c h w -> b c (h w)')
out1 = out1.permute(0, 2, 1)
# out1 = torch.cat((out1,pooling_output),dim=1)
out1 = self.layernorm(out1)
out1 = F.dropout(out1, p=0.5, training=self.training)
# print(2)
# print(out1.shape)
output = self.relu(self.linear(out1))
output = F.dropout(output, p=0.4, training=self.training)
output = self.obj_output(output) # [batch_size, maxlen, 2*plen]
# print(3)
# print(output.shape)
######
# logits_output = torch.unsqueeze(logits, dim = 1)
# final_output = logits_output + output
output = torch.sigmoid(output)
# output = output ** 2
obj_preds = output.view(-1, output.shape[1], len(predicate2id), 2)
return sub_preds, obj_preds
net = REModel().to(DEVICE)
print(DEVICE)
optimizer = torch.optim.Adam(net.parameters(), lr=1e-5)
def get_long_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded LongTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.LongTensor(batch_size, token_len).fill_(0)
for i, s in enumerate(tokens_list):
tokens[i, :len(s)] = torch.LongTensor(s)
return tokens
class ValidDataset(Dataset):
def __init__(self, data):
self.data = data
def __getitem__(self, i):
t = self.data[i]
# word_input, center_word = [],[]
# print (t['triple_list'])
if len(t['text']) > 254:
t['text'] = t['text'][:254]
x = tokenizer.tokenize(t['text'])
x = ["[CLS]"] + x + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(x)
seg_ids = [0] * len(token_ids)
assert len(token_ids) == len(t['text']) + 2
token_ids = torch.LongTensor(self.sequence_padding(token_ids, maxlen=maxlen))
seg_ids = torch.LongTensor(self.sequence_padding(seg_ids, maxlen=maxlen))
# tri = t['triple_list']
# print('tri',tri)
'''
return {'token_ids':token_ids,
'seg_ids':seg_ids,
'text':t['text'],
'triple_list':t['triple_list']}
'''
# return token_ids, seg_ids, list(t['text']), list(t['triple_list'])
return token_ids, seg_ids, t
def __len__(self):
data_len = len(self.data)
return data_len
def sequence_padding(self, x, maxlen, padding=0):
output = np.concatenate([x, [padding] * (maxlen - len(x))]) if len(x) < maxlen else np.array(x[:maxlen])
return output
valid_dataset = ValidDataset(valid_data)
valid_loader = DataLoader(dataset=valid_dataset, batch_size=args.batch2, shuffle=False, drop_last=True)
def extract_spoes(data, model, device):
'''
"""抽取三元组"""
if len(text) > 254:
text = text[:254]
tokens = tokenizer.tokenize(text)
tokens = ["[CLS]"] + tokens + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(tokens)
assert len(token_ids) == len(text) + 2
seg_ids = [0] * len(token_ids)
'''
# print (data[2])
# print (data['text'])
# token_ids = data['token_ids']
token_ids = data[0]
# seg_ids = data['seg_ids']
seg_ids = data[1]
# import pdb
# pdb.set_trace()
sub_preds = model(token_ids.to(device),
seg_ids.to(device))
sub_preds = sub_preds.detach().cpu().numpy() # [1, maxlen, 2]
# print(sub_preds[0,])
start = np.where(sub_preds[0, :, 0] > 0.5)[0]
end = np.where(sub_preds[0, :, 1] > 0.5)[0]
# print(start, end)
tmp_print = []
subjects = []
for i in start:
j = end[end >= i]
if len(j) > 0:
j = j[0]
subjects.append((i, j))
tmp_print.append(data[2][i - 1: j])
if subjects:
spoes = []
# print (len(subjects)) #只有2
token_ids = np.repeat(token_ids, len(subjects), 0) # [len_subjects, seqlen]
# print(token_ids.shape)
seg_ids = np.repeat(seg_ids, len(subjects), 0)
subjects = np.array(subjects) # [len_subjects, 2]
# 传入subject 抽取object和predicate
_, object_preds = model(token_ids.to(device),
seg_ids.to(device),
torch.LongTensor(subjects).to(device))
object_preds = object_preds.detach().cpu().numpy()
# print(object_preds.shape)
for sub, obj_pred in zip(subjects, object_preds):
# obj_pred [maxlen, 55, 2]
start = np.where(obj_pred[:, :, 0] > 0.3)
end = np.where(obj_pred[:, :, 1] > 0.3)
for _start, predicate1 in zip(*start):
for _end, predicate2 in zip(*end):
if _start <= _end and predicate1 == predicate2:
spoes.append(
((sub[0] - 1, sub[1] - 1), predicate1, (_start - 1, _end - 1))
)
break
# print (spoes)
return [(data[2][s[0]:s[1] + 1], id2predicate[str(p)], data[2][o[0]:o[1] + 1]) for s, p, o in spoes]
else:
return []
def evaluate(valid_data, valid_load, model, device):
"""评估函数,计算f1、precision、recall
"""
# F1 = []
# P = []
# Re = []
X, Y, Z = 1e-10, 1e-10, 1e-10
f = open("./data/CMED/dev_pred.json", 'w', encoding='utf-8')
pbar = tqdm()
# for d in data:
# with torch.no_grad:
# print (type(valid_load))
# return
for idx, data in tqdm(enumerate(valid_load)):
input = data[0], data[1], data[2]['text'][0]
# print(input)
# input = data[0], data[1], valid_data[idx]['text'], valid_data[idx]['triple_list']
R = extract_spoes(input, model, device)
# print ('R:',R)
T = valid_data[idx]['triple_list']
'''
tri = data[3]
#tri = tuple(tri)
T = []
for tris in tri:
temp = tuple()
for i in tris:
temp += i
T.append(temp)
'''
# print ('tri:',tri)
# print ('tri:',temp_tri)
R = set(R)
# print ('R',R)
T = set(T)
# print('T', R)
X += len(R & T)
Y += len(R)
Z += len(T)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
# F1.append(f1)
# P.append(precision)
# Re.append(recall)
pbar.update()
pbar.set_description(
'F1: %.5f, \tPrecision: %.5f, \tRecall: %.5f' % (f1, precision, recall)
)
if f1 > 0.5:
s = json.dumps({
'text': valid_data[idx]['text'],
'triple_list': list(T),
'triple_list_pred': list(R),
'new': list(R - T),
'lack': list(T - R),
}, ensure_ascii=False, indent=4)
f.write(s + '\n')
pbar.close()
f.close()
return f1, precision, recall
'''
def evaluate(data, model, device):
"""评估函数,计算f1、precision、recall
"""
X, Y, Z = 1e-10, 1e-10, 1e-10
f = open("/home/jason/EXP/NLP/triple_test/data/CMED/dev_pred.json", 'w', encoding='utf-8')
pbar = tqdm()
for d in data:
R = extract_spoes(d['text'], model, device)
T = d['triple_list']
#print (T)
R = set(R)
#print ('R',R)
T = set(T)
#T = set()
#for item in T1:
# for i in item:
# T.add(i)
#print ('T',T)
X += len(R & T)
Y += len(R)
Z += len(T)
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
pbar.update()
pbar.set_description(
'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
)
if f1 > 0.5:
s = json.dumps({
'text': d['text'],
'triple_list': list(T),
'triple_list_pred': list(R),
'new': list(R - T),
'lack': list(T - R),
}, ensure_ascii=False, indent=4)
f.write(s + '\n')
pbar.close()
f.close()
return f1, precision, recall
'''
import sys
import os
class Logger(object):
def __init__(self,fileN="default.log"):
self.terminal = sys.stdout
self.log = open(fileN,"a")
def write(self,message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
pass
# def FocalLoss(input, target ,gamma=2,weight=None,reduction='mean'):
# # def __init__(self,gamma=2,weight=None,reduction='mean'):
# # super(FocalLoss, self).__init__()
# # self.gamma = gamma
# # self.weight = weight
# # self.reduction = reduction
# # def forward(self, output, target):
# out_target = torch.stack([input[i,t] for i.type(torch.bool),t.type(torch.bool) in enumerate(target)])
# probs = torch.sigmoid(out_target)
# focal_weight = torch.pow(1-probs,gamma=2)
#
# ce_loss = F.cross_entropy(input,target,weight=None,reduction='none')
# focal_loss = focal_weight*ce_loss
#
# if reduction == 'mean':
# focal_loss = (focal_loss/focal_weight.sum()).sum()
# elif reduction == 'sum':
# focal_loss = focal_loss.sum()
#
# return focal_loss
# class FocalLoss(nn.Module):
#
# def __init__(self, weight=None, reduction='mean', gamma=0, eps=1e-7):
# super(FocalLoss, self).__init__()
# self.gamma = gamma
# self.eps = eps
# self.ce = torch.nn.CrossEntropyLoss(weight=weight, reduction=reduction)
#
# def forward(self, input, target):
# logp = self.ce(input, target)
# print('logp',logp)
# p = torch.exp(-logp)
# loss = (1 - p) ** self.gamma * logp
# return loss.mean()
# def Dice_loss(inputs,target,beta=1,smooth=1e-5):
# n,c,h = inputs.size()
# nt,ht,wt = target.size()
# if n!= nt and h!=wt:
# inputs = F.interpolate(inputs,size=(ht,wt),mode="bilinear",align_corners=True)
# temp_imputs = torch.softmax(inputs.transpose(1,2).transpose(2,3).contiguous().view(n,-1,c),-1)
# temp_target = target.view(n,-1,ct)
#
# #......................
# #ice loss
# #......................
# tp = torch.sum(temp_target[...,:-1]*temp_imputs,axis=[0,1])
# fp = torch.sum(temp_imputs,axis=[0,1])-tp
# fn = torch.sum(temp_target[...,:-1],axis=[0,1])-tp
#
# score = ((1+beta**2)*tp+smooth)/((1+beta**2)*tp+beta**2*fn+fp+smooth)
# dice_loss = 1-torch.mean(score)
# return dice_loss
# def dice_coeff(pred, target):
# smooth = 1.
# num = pred.size(0)
# m1 = pred.view(num, -1) # Flatten
# m2 = target.view(num, -1) # Flatten
# intersection = (m1 * m2).sum()
#
# return (2. * intersection + smooth) / (m1.sum() + m2.sum() + smooth)
# def train(model, train_loader, optimizer, epoches, device):
# # model.train()
# torch.backends.cudnn.enabled = False
# for _ in range(epoches):
# print('epoch: ', _ + 1)
# start = time.time()
# train_loss_sum = 0.0
# for batch_idx, x in tqdm(enumerate(train_loader)):
# # token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
# token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
# # tokens_words, masks_out, head = x[5].to(device), x[6].to(device), x[7].to(device)
# # print (token_ids.shape)
#
# mask = (token_ids > 0).float()
# mask = mask.to(device) # zero-mask
# sub_labels, obj_labels = x[3].float().to(device), x[4].float().to(device)
# sub_preds, obj_preds = model(token_ids, seg_ids, sub_ids)
# # (batch_size, maxlen, 2), (batch_size, maxlen, 55, 2)
#
# #计算loss
# smooth = 1
# intersection = sub_labels * sub_preds
# sub_dice_eff = (2 * intersection.sum(1) + smooth) / (sub_preds.sum(1) + sub_labels.sum(1) + smooth)
# # print(sub_dice_eff)
# smooth = 1
# # intersection2 = obj_labels * obj_preds
# # obj_dice_eff = (2 * intersection2.sum(1) + smooth) / (obj_preds.sum(1) + obj_labels.sum(1) + smooth)
# # # print(obj_dice_eff)
# # beta = 1
# # smooth = 1e-5
# # p = torch.sigmoid(sub_preds)
# # tp = torch.sum(sub_labels[..., :-1] * p, axis=[0, 1])
# # # print(tp)
# # fp = torch.sum(p, axis=[0, 1]) - tp
# # # print(fp)
# # fn = torch.sum(sub_labels[..., :-1], axis=[0, 1]) - tp
# # score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
# # sub_dice_loss = 1-torch.mean(score)
# # # print(sub_dice_loss)
# # ce_loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none') # [bs, ml, 2]
# # p_t = p*sub_labels + (1-p)*(1-sub_labels)
# # gamma = 2
# # loss_sub= ce_loss_sub*((1-p_t)**gamma)
#
# q = torch.sigmoid(obj_preds)
# # print(q)
# tp = torch.sum(obj_labels[..., :-1] * q, axis=[0, 1])
# # print(tp)
# fp = torch.sum(q, axis=[0, 1]) - tp
# # print(fp)
# fn = torch.sum(obj_labels[..., :-1], axis=[0, 1]) - tp
# score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
# obj_dice_loss = 1 - torch.mean(score)
# # print(obj_dice_loss)
# loss_sub = torch.mean(loss_sub, 2) # (batch_size, maxlen)
# loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
# # print('loss_sub:',loss_sub)
# q = torch.sigmoid(obj_preds)
# ce_loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none') # [bs, ml, 55, 2]
# q_t = q * obj_labels + (1 - q) * (1 - obj_labels)
# gamma = 2
# loss_obj = ce_loss_obj * ((1 - q_t) ** gamma)
# loss_obj = torch.sum(torch.mean(loss_obj, 3), 2) # (bs, maxlen)
# loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
# loss = loss_sub + loss_obj
# loss_sub = dice_coeff(sub_preds, sub_labels)
# loss_obj = dice_coeff(obj_preds, obj_labels)
# loss = loss_sub+ loss_obj
# # 计算loss
# loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none') # [bs, ml, 2]
# loss_sub = torch.mean(loss_sub, 2) # (batch_size, maxlen)
# loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
# loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none') # [bs, ml, 55, 2]
# loss_obj = torch.sum(torch.mean(loss_obj, 3), 2) # (bs, maxlen)
# loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
# loss = loss_sub + loss_obj
# optimizer.zero_grad()
#
# loss.backward()
# optimizer.step()
# train_loss_sum += loss.cpu().item()
# if (batch_idx + 1) % 31 == 0:
# print('loss: ', train_loss_sum / (batch_idx + 1), 'time: ', time.time() - start)
#
# torch.save(net.state_dict(), "./checkpoints/best_re.pth")
#
# with torch.no_grad():
# # model.eval()
# # print (valid_data[:5])
# val_f1, pre, rec = evaluate(valid_data, valid_loader, net, device)
#
# print('F1_score: %.5f, Precision: %.5f, Recall: %.5f' % (val_f1, pre, rec))
# # sys.stdout = Logger('./datalog.txt')
# re = tuple((val_f1, pre, rec))
# with open("./result_Dice_loss.json","a",encoding='utf-8') as f:
# json.dump(re,f,indent=4,ensure_ascii=True)
# # print("f1, pre, rec: ", val_f1, pre, rec)
class FocalLoss(nn.Module):
def __init__(self, alpha=1, gamma=2, size_average=True, ignore_index=255):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.ignore_index = ignore_index
self.size_average = size_average
def forward(self, inputs, targets):
ce_loss = F.class_entropy(inputs, targets, reduction='none',ignore_index=self.ignore_index)
pt = torch.exp(-ce_loss)
focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
return focal_loss.sum()
def train(model, train_loader, optimizer, epoches, device):
# model.train()
torch.backends.cudnn.enabled = False
list = []
for _ in range(epoches):
# f = open("./test.txt", 'w+', encoding='utf-8')
print('epoch: ', _ + 1)
start = time.time()
train_loss_sum = 0.0
for batch_idx, x in tqdm(enumerate(train_loader)):
# token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
# tokens_words, masks_out, head = x[5].to(device), x[6].to(device), x[7].to(device)
# print (token_ids.shape)
mask = (token_ids > 0).float()
mask = mask.to(device) # zero-mask
sub_labels, obj_labels = x[3].float().to(device), x[4].float().to(device)
sub_preds, obj_preds = model(token_ids, seg_ids, sub_ids)
# (batch_size, maxlen, 2), (batch_size, maxlen, 55, 2)
# 计算loss
smooth = 1
intersection2 = obj_labels * obj_preds
obj_dice_eff = (2 * intersection2.sum(1) + smooth) / (obj_preds.sum(1) + obj_labels.sum(1) + smooth)
# print(obj_dice_eff)
beta = 1
smooth = 1e-5
p = torch.sigmoid(sub_preds)
tp = torch.sum(sub_labels[..., :-1] * p, axis=[0, 1])
# print(tp)
fp = torch.sum(p, axis=[0, 1]) - tp
# print(fp)
fn = torch.sum(sub_labels[..., :-1], axis=[0, 1]) - tp
score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
sub_dice_loss = 1-torch.mean(score)
# print(sub_dice_loss)
ce_loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none') # [bs, ml, 2]
p_t = p*sub_labels + (1-p)*(1-sub_labels)
gamma = 2
loss_sub= ce_loss_sub*((1-p_t)**gamma)
q = torch.sigmoid(obj_preds)
# print(q)
tp = torch.sum(obj_labels[..., :-1] * q, axis=[0, 1])
# print(tp)
fp = torch.sum(q, axis=[0, 1]) - tp
# print(fp)
fn = torch.sum(obj_labels[..., :-1], axis=[0, 1]) - tp
score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
obj_dice_loss = 1 - torch.mean(score)
# print(obj_dice_loss)
loss_sub = torch.mean(loss_sub, 2) # (batch_size, maxlen)
loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
# print('loss_sub:',loss_sub)
q = torch.sigmoid(obj_preds)
ce_loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none') # [bs, ml, 55, 2]
q_t = q * obj_labels + (1 - q) * (1 - obj_labels)
gamma = 2
loss_obj = ce_loss_obj * ((1 - q_t) ** gamma)
loss_obj = torch.sum(torch.mean(loss_obj, 3), 2) # (bs, maxlen)
loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
# jiaochashang
# loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none') # [bs, ml, 2]
# loss_sub = torch.mean(loss_sub, 2) # (batch_size, maxlen)
# loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
# loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none') # [bs, ml, 55, 2]
# loss_obj = torch.sum(torch.mean(loss_obj, 3), 2) # (bs, maxlen)
# loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
loss = loss_sub + loss_obj
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss_sum += loss.cpu().item()
if (batch_idx + 1) % 31 == 0:
print('loss: ', train_loss_sum / (batch_idx + 1), 'time: ', time.time() - start)
list.append(train_loss_sum / (batch_idx + 1))
torch.save(net.state_dict(), "./checkpoints/best_re.pth")
with torch.no_grad():
# model.eval()
# print (valid_data[:5])
val_f1, pre, rec = evaluate(valid_data, valid_loader, net, device)
print('F1_score: %.5f, Precision: %.5f, Recall: %.5f' % (val_f1, pre, rec))
# print("f1, pre, rec: ", val_f1, pre, rec)
print(list)
# LOGGER = set_logging(name='test', level=logging.INFO, verbose=True)
if __name__ == '__main__':
# net.load_state_dict(torch.load("RE/data/bert_re.pth"))
train(net, train_loader, optimizer, 600, DEVICE) |