File size: 39,933 Bytes
badcf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
import json, time
import numpy as np
from tqdm import tqdm

from torch.utils.data import Dataset, DataLoader
from pytorch_pretrained_bert import BertModel, BertTokenizer
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
# import paddle
# import paddle.nn.functional as F
import unicodedata
from pyhanlp import *
from torch_geometric.nn import RGCNConv
from gcn import *
from graphModule import *
from einops import rearrange
from config import args
from biaffine import *

os.environ["CUDA_VISIBLE_DEVICES"] = "1"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# DEVICE = torch.device("cpu")
# BERT_PATH = "./SpanBERT/Spanbert-base-cased"
# BERT_PATH = "./chinese_roberta_wwm_ext_pytorch"
BERT_PATH = "./bert"
maxlen = 256  ####256


def load_data(filename):
    D = []
    with open(filename) as data_file:
        data = data_file.read()
        # print(data)
        data = json.loads(data)
        for item in data:
            d = {'text': item['text'], 'triple_list': []}
            for sub_item in item['triple_list']:
                d['triple_list'].append(
                    (sub_item[0], sub_item[1], sub_item[2])
                )
            D.append(d)

    return D


# 加载数据集
train_data = load_data('./data/CMED/train_triples.json')
valid_data = load_data('./data/CMED/dev_triples.json')


def search(pattern, sequence):
    """从sequence中寻找子串pattern
    如果找到,返回第一个下标;否则返回-1。
    """
    n = len(pattern)
    for i in range(len(sequence)):
        if sequence[i:i + n] == pattern:
            return i
    return -1


train_data_new = []  # 创建新的训练集,把结束位置超过250的文本去除,可见并没有去除多少
for data in tqdm(train_data):
    # print (data)
    flag = 1
    for s, p, o in data['triple_list']:
        s_begin = search(s, data['text'])
        o_begin = search(o, data['text'])
        if s_begin == -1 or o_begin == -1 or s_begin + len(s) > 256 or o_begin + len(o) > 256:
            flag = 0
            break
    if flag == 1:
        train_data_new.append(data)
print("去除大于250的文本:\t", len(train_data_new))

# 读取schema
'''
with open('RE/data/schema.json', encoding='utf-8') as f:
    id2predicate, predicate2id, n = {}, {}, 0
    predicate2type = {}
    for l in f:
        l = json.loads(l)
        predicate2type[l['predicate']] = (l['subject_type'], l['object_type'])
        for k, _ in sorted(l['object_type'].items()):
            key = l['predicate'] + '_' + k
            id2predicate[n] = key
            predicate2id[key] = n
            n += 1
print(len(predicate2id))
'''

with open('./data/CMED/rel2id.json', encoding='utf-8') as f:
    # id2predicate, predicate2id, n = {}, {}, 0
    l = json.load(f)
    id2predicate = l[0]
    predicate2id = l[1]
print("关系类型数量:\t", len(predicate2id))


class OurTokenizer(BertTokenizer):
    def tokenize(self, text):
        R = []
        for c in text:
            if c in self.vocab:
                R.append(c)
            elif self._is_whitespace(c):
                R.append('[unused1]')
            else:
                R.append('[UNK]')
        return R

    def _is_whitespace(self, char):
        if char == " " or char == "\t" or char == "\n" or char == "\r":
            return True
        cat = unicodedata.category(char)
        if cat == "Zs":
            return True
        return False


# 初始化分词器
tokenizer = OurTokenizer(vocab_file="./chinese_roberta_wwm_ext_pytorch/vocab.txt")


######依存句法树+分词
def seg_pos(text):
    head, seg_word, Dep_rel, str_le = [], [], [], []
    # tree = HanLP.parseDependency(text)
    parser = JClass('com.hankcs.hanlp.dependency.nnparser.NeuralNetworkDependencyParser')()
    parser.enableDeprelTranslator(False)
    tree = parser.parse(text)
    for word in tree.iterator():  # 通过dir()可以查看sentence的方法
        head.append(word.HEAD.ID)
        for i in word.LEMMA.split():
            str_le.append(i)
        seg_word.append(word.LEMMA)
        Dep_rel.append(word.DEPREL)
    return head, seg_word, Dep_rel, str_le


def out_list_word(seg_word):
    temp = ""
    for word in seg_word:
        temp += " " + word
        text_out = temp.lstrip(" ")
    return text_out


def map_to_ids(tokens, vocab):
    ids = [vocab[t] if t in vocab.keys() else 0 for t in tokens]
    return ids


def vocab_json():
    vocab_out = json.load(open("./vacab.json"))
    return vocab_out


def dep_json():
    dep_out = json.load(open("./dep.json"))
    return dep_out


class TorchDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __getitem__(self, i):
        t = self.data[i]
        # print ('t!!!',t) ######{'text': '齐志江,男,汉族,中共党员,大学学历', 'triple_list': [('齐志江', '民族', '汉族')]}

        x = tokenizer.tokenize(t['text'])
        # print (x)
        x = ["[CLS]"] + x + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(x)
        seg_ids = [0] * len(token_ids)
        assert len(token_ids) == len(t['text']) + 2
        spoes = {}
        for s, p, o in t['triple_list']:
            s = tokenizer.tokenize(s)
            s = tokenizer.convert_tokens_to_ids(s)
            p = predicate2id[p]
            o = tokenizer.tokenize(o)
            o = tokenizer.convert_tokens_to_ids(o)
            s_idx = search(s, token_ids)
            o_idx = search(o, token_ids)

            if s_idx != -1 and o_idx != -1:
                s = (s_idx, s_idx + len(s) - 1)
                o = (o_idx, o_idx + len(o) - 1, p)  # 同时预测o和p
                if s not in spoes:
                    spoes[s] = []
                spoes[s].append(o)
        # print(spoes) {(2, 5): [(13, 15, 31), (19, 21, 38), (29, 31, 45)]}

        if spoes:
            sub_labels = np.zeros((len(token_ids), 2))
            # print (sub_labels)
            for s in spoes:
                # print (s) #(2, 5)
                # print (sub_labels)
                # print(s[0])
                sub_labels[s[0], 0] = 1
                sub_labels[s[1], 1] = 1
            # 随机选一个subject
            start, end = np.array(list(spoes.keys())).T
            start = np.random.choice(start)
            # print (start)
            end = sorted(end[end >= start])[0]
            sub_ids = (start, end)
            obj_labels = np.zeros((len(token_ids), len(predicate2id), 2))
            for o in spoes.get(sub_ids, []):
                # print (o)
                obj_labels[o[0], o[2], 0] = 1
                obj_labels[o[1], o[2], 1] = 1

        token_ids = self.sequence_padding(token_ids, maxlen=maxlen)
        seg_ids = self.sequence_padding(seg_ids, maxlen=maxlen)
        sub_labels = self.sequence_padding(sub_labels, maxlen=maxlen, padding=np.zeros(2))
        sub_ids = np.array(sub_ids)
        obj_labels = self.sequence_padding(obj_labels, maxlen=maxlen,
                                           padding=np.zeros((len(predicate2id), 2)))

        return (torch.LongTensor(token_ids), torch.LongTensor(seg_ids), torch.LongTensor(sub_ids),
                torch.LongTensor(sub_labels), torch.LongTensor(obj_labels))

    def __len__(self):
        data_len = len(self.data)
        return data_len

    def sequence_padding(self, x, maxlen, padding=0):
        output = np.concatenate([x, [padding] * (maxlen - len(x))]) if len(x) < maxlen else np.array(x[:maxlen])
        return output


train_dataset = TorchDataset(train_data_new)
train_loader = DataLoader(dataset=train_dataset, batch_size=args.batch1, shuffle=True, drop_last=True)


# for i, x in enumerate(train_loader):
#     print([_.shape for _ in x])
#     if i == 10:
#         break
class GRUnet(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, layer_dim, output_dim):
        """
        vocab_size: 词典长度,也就是嵌入矩阵的行数
        embedding_dim: 词向量的维度,也就是嵌入矩阵的列数,也是W的列数,也是输入GRU的x_t的维度
        hidden_dim: GRU神经元的个数,也就是W的行数
        layer_dim: GRU的层数
        output_dim: 隐藏层输出的维度
        """
        super(GRUnet, self).__init__()
        # 嵌入层
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        # GRU + 全连接
        self.gru = nn.GRU(embedding_dim, hidden_dim, layer_dim,
                          batch_first=True)
        self.fc1 = nn.Sequential(
            nn.Linear(hidden_dim, hidden_dim),
            nn.Dropout(0.5),
            torch.nn.ReLU(),
            nn.Linear(hidden_dim, output_dim)
        )

    def forward(self, x):
        # x : [bacth, time_step, vocab_size]
        embeds = self.embedding(x)
        # print(embeds.shape)
        # embeds : [batch, time_step, embedding_dim]
        r_out, h_n = self.gru(embeds, None)
        # print (r_out.shape)
        # r_out : [batch, time_step, hidden_dim]
        # out = self.fc1(r_out[:, -1, :])
        out = self.fc1(r_out)
        # out : [batch, time_step, output_dim]
        return out


class GCN(nn.Module):
    def __init__(self, hidden_size=768):
        super(GCN, self).__init__()
        self.hidden_size = hidden_size
        # self.fc = nn.Linear(self.hidden_size, self.hidden_size // 2)

    def forward(self, x, adj, is_relu=True):
        out = x

        # Make permutations for matrix multiplication
        # Assuming batch_first = False
        # print (out.shape)
        # out = out.permute(1, 0, 2) # to: batch, seq_len, hidden
        # adj = adj.permute(2, 0, 1) # to: batch, seq_len, seq_len

        out = torch.bmm(adj, out)  # .permute(1, 0, 2) # to: seq_len, batch, hidden

        if is_relu == True:
            out = F.relu(out)

        return out



class RGCN(torch.nn.Module):
    def __init__(self,in_channels,hideden_channels,out_channels,n_layers=2,dropout=0.5):
        super().__init__()
        self.convs = torch.nn.ModuleList()
        self.norms = torch.nn.ModuleList()
        self.relu = F.relu
        self.dropout = dropout
        self.convs.append(RGCNConv(in_channels,hideden_channels,num_relations=24,num_bases=1))
        for i in range(n_layers-2):
            self.convs.append(RGCNConv(hideden_channels,hideden_channels,num_relations=24,num_bases=1))
            self.norms.append(torch.nn.BatchNormld(hideden_channels))
        self.convs.append(RGCNConv(hideden_channels,out_channels,num_relations=24,num_bases=1))
    def forward(self, x, edge_index=2561,edge_type=24):
        for conv ,norm in zip(self.convs, self.norms):
            x = norm(conv(x,2561,24))
            x = F.relu(x)
            x = F.dropout(x,p=self.dropout,training=self.training)
        return x

class BertLayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12):
        super(BertLayerNorm, self).__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.variance_epsilon = eps

    def forward(self, x):
        u = x.mean(-1, keepdim=True)  # [bs, maxlen, 1]
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.weight * x + self.bias


class Attention2(nn.Module):
    """
    1.输入 [batch_size,time_step,hidden_dim] -> Linear、Tanh
    2.[batch_size,time_step,hidden_dim] -> transpose
    3.[batch_size,hidden_dim,time_step] -> Softmax
    4.[batch_size,hidden_dim,time_step] -> mean
    5.[batch_size,time_step] -> unsqueeze
    5.[batch_size,1,time_step] -> expand
    6.[batch_size,hidden_dim,time_step] -> transpose
    7.[batch_size,time_step,hidden_dim]
    """

    def __init__(self, hidden_dim):
        super(Attention2, self).__init__()
        self.hidden_dim = hidden_dim
        self.dense = nn.Linear(hidden_dim, hidden_dim)

    def forward(self, features, mean=True):
        batch_size, time_step, hidden_dim = features.size()
        # weight = nn.Tanh()(self.dense(features))
        weight = nn.ReLU()(self.dense(features))

        # mask给负无穷使得权重为0
        mask_idx = torch.sign(torch.abs(features).sum(dim=-1))
        mask_idx = mask_idx.unsqueeze(-1).expand(batch_size, time_step, hidden_dim)
        paddings = torch.ones_like(mask_idx) * (-2 ** 32 + 1)
        weight = torch.where(torch.eq(mask_idx, 1), weight, paddings)

        weight = weight.transpose(2, 1)
        # weight = nn.Softmax(dim=2)(weight)
        # weight = nn.Sigmoid(weight)
        if mean:
            weight = weight.mean(dim=1)
            weight = weight.unsqueeze(1)
            weight = weight.expand(batch_size, hidden_dim, time_step)
        weight = weight.transpose(2, 1)
        features_attention = weight * features

        return features_attention


class KeyValueMemoryNetwork(nn.Module):
    def __init__(self, vocab_size, feature_vocab_size, emb_size):
        super(KeyValueMemoryNetwork, self).__init__()
        self.key_embedding = nn.Embedding(vocab_size, emb_size, padding_idx=0)
        self.value_embedding = nn.Embedding(feature_vocab_size, emb_size, padding_idx=0)
        self.scale = np.power(emb_size, 0.5)

    def forward(self, key_embed, value_embed, hidden, mask_matrix):
        # key_embed = self.key_embedding(key_seq)
        # print (key_embed.shape)
        # value_embed = self.value_embedding(value_seq)
        # print (value_embed.shape)
        # hidden = self.key_embedding(hidden)
        u = torch.bmm(hidden.float(), key_embed.transpose(1, 2))
        u = u / self.scale
        exp_u = torch.exp(u)
        # print ('exp_u',exp_u.shape)
        delta_exp_u = torch.mul(exp_u.float(), mask_matrix.float())
        sum_delta_exp_u = torch.stack([torch.sum(delta_exp_u, 2)] * delta_exp_u.shape[2], 2)
        p = torch.div(delta_exp_u, sum_delta_exp_u + 1e-10)
        # print ('exp_u',p.shape)(9,256,256)
        # embedding_val = value_embed.permute(3, 0, 1, 2)
        o = torch.mul(p.float(), value_embed.float())
        # print (o.shape)
        # o = o.permute(1, 2, 3, 0)
        # o = torch.sum(o, 2)

        # aspect_len = (o != 0).sum(dim=1)
        # o = o.float().sum(dim=1)
        # avg_o = torch.div(o, aspect_len)
        return o  # avg_o.type_as(hidden)



class REModel(nn.Module):
    def __init__(self):
        super(REModel, self).__init__()
        self.bert = BertModel.from_pretrained(BERT_PATH)
        for param in self.bert.parameters():
            param.requires_grad = True

        self.linear = nn.Linear(768, 768)
        self.relu = nn.ReLU()
        self.sub_output = nn.Linear(768, 2)
        self.suopand = nn.Linear(1024, 768)
        self.cat_output = nn.Linear(1024, 768)
        self.obj_output = nn.Linear(768, len(predicate2id) * 2)

        self.sub_pos_emb = nn.Embedding(256, 768)  # subject位置embedding
        self.layernorm = BertLayerNorm(768, eps=1e-12)
        # self.GCN_model = GCNClassifier(opt, emb_matrix=None)

        self.GRU = GRUnet(23923, 768, 1024, 6, 768)
        # self.CRF_S = CRF_S(768, 16, if_bias=True)
        # self.LSTM_CRF = LSTM_CRF(23922, 16, 768, 768, 1, 0.5, large_CRF=True)

        self.biaffine = BiaffineTagger(768, 2)

        # self.GCN = GCN(hidden_size=768)
        self.attention2 = Attention2(hidden_dim=768)
        self.gcu1 = GraphConv1(batch=args.batch1, h=[16, 32, 64, 128, 256], w=[16, 32, 64, 128, 256], d=[768, 512],
                               V=[2, 4, 8, 32], outfeatures=[256, 128])
        # self.gcu2 = GraphConv2(batch = args.batch2, h=[16,32,64,128,256], w=[16,32,64,128,256], d=[768,512], V=[2,4,8,32],outfeatures=[256,128])
        self.cov = nn.Conv2d(768, 768, 1)
        self.GCN_model = GCNClassifier(opt, emb_matrix=None)
        self.emb = nn.Embedding(23923, 768)
        self.emb1 = nn.Embedding(37, 256)
        self.keyvalue = KeyValueMemoryNetwork(23923, 23923, 768)
        # self.apnb = APNB(in_channels=768, out_channels=768, key_channels=256, value_channels=256,dropout=0.05, sizes=([1]))

    def forward(self, token_ids, seg_ids, sub_ids=None):
        out, _ = self.bert(token_ids, token_type_ids=seg_ids,
                           output_all_encoded_layers=False)  # [batch_size, maxlen, size]
        # print ("1",out.shape)
        out = self.attention2(out)
        # print("1", out.shape)
        sub_preds = self.sub_output(out)  # [batch_size, maxlen, 2]
        sub_preds = torch.sigmoid(sub_preds)
        # sub_preds = sub_preds ** 2

        if sub_ids is None:
            return sub_preds

        # print(sub_ids)
        # print(sub_ids[:, :1])
        # 融入subject特征信息
        sub_pos_start = self.sub_pos_emb(sub_ids[:, :1])  # 取主实体首位置
        sub_pos_end = self.sub_pos_emb(sub_ids[:, 1:])  # [batch_size, 1, size] #取主实体尾位置

        # print(sub_pos_start)

        sub_id1 = sub_ids[:, :1].unsqueeze(-1).repeat(1, 1, out.shape[-1])  # subject开始的位置id 重复字编码次数
        # print (sub_id1)
        sub_id2 = sub_ids[:, 1:].unsqueeze(-1).repeat(1, 1, out.shape[-1])  # [batch_size, 1, size]
        sub_start = torch.gather(out, 1, sub_id1)  # 按照sub_id1位置索引去找bert编码后的值,在列维度进行索引
        # print(sub_start.shape)
        sub_end = torch.gather(out, 1, sub_id2)  # [batch_size, 1, size]

        sub_start = sub_pos_start + sub_start  # 位置编码向量+bert字编码向量
        sub_end = sub_pos_end + sub_end
        out1 = out + sub_start + sub_end

        out1 = torch.reshape(out1, (-1, 16, 16, 768))
        # print ('out1:',out1.shape)
        out1 = out1.permute(0, 3, 1, 2)
        # print(out1.shape)
        # out1 = HGT(in_channels=1, hidden_channels=5, out_channels=2, n_layers=2, n_heads=3)(out1)

        out1 = RGCN(in_channels=1, hideden_channels=5, out_channels=2, n_layers=2, dropout=0.5)(out1)
        # print(1)out1 = RGCN(in_channels=1, hideden_channels=5, out_channels=2, n_layers=2, dropout=0.5)(out1)
        # print(out1.shape)
        # print(1)
        # print(out1.shape)
        # if out1.shape[0] == args.batch1:
        #     out1 = self.gcu1(out1)
        #     # word_re_embed,_ = self.LSTM_CRF(inputs[0],hidden=None,t = True)
        # else:
        #     out1 = GraphConv2(batch=out1.shape[0], h=[16, 32, 64, 128, 256], w=[16, 32, 64, 128, 256], d=[768, 512],
        #                       V=[2, 4, 8, 32], outfeatures=[256, 128])(out1)
        #     # word_re_embed,_ =  LSTM_CRF1(23922, 16, 768, 768, 1, 0.5, large_CRF=True, t = out1.shape[0]).to(DEVICE)(inputs[0],hidden=None)
        # print ('out1_',out1.shape)

        out1 = self.cov(out1)
        # out1 = self.apnb(out1)
        # out = out.permute(0,2,3,1)
        # print (out.shape)
        # b, c, h, w = out1.shape
        out1 = rearrange(out1, 'b c h w -> b c (h w)')
        out1 = out1.permute(0, 2, 1)
        # out1 = torch.cat((out1,pooling_output),dim=1)
        out1 = self.layernorm(out1)
        out1 = F.dropout(out1, p=0.5, training=self.training)
        # print(2)
        # print(out1.shape)
        output = self.relu(self.linear(out1))
        output = F.dropout(output, p=0.4, training=self.training)
        output = self.obj_output(output)  # [batch_size, maxlen, 2*plen]
        # print(3)
        # print(output.shape)
        ######
        # logits_output = torch.unsqueeze(logits, dim = 1)
        # final_output = logits_output + output
        output = torch.sigmoid(output)
        # output = output ** 2

        obj_preds = output.view(-1, output.shape[1], len(predicate2id), 2)
        return sub_preds, obj_preds


net = REModel().to(DEVICE)
print(DEVICE)
optimizer = torch.optim.Adam(net.parameters(), lr=1e-5)


def get_long_tensor(tokens_list, batch_size):
    """ Convert list of list of tokens to a padded LongTensor. """
    token_len = max(len(x) for x in tokens_list)
    tokens = torch.LongTensor(batch_size, token_len).fill_(0)
    for i, s in enumerate(tokens_list):
        tokens[i, :len(s)] = torch.LongTensor(s)
    return tokens


class ValidDataset(Dataset):
    def __init__(self, data):
        self.data = data

    def __getitem__(self, i):
        t = self.data[i]
        # word_input, center_word = [],[]
        # print (t['triple_list'])
        if len(t['text']) > 254:
            t['text'] = t['text'][:254]
        x = tokenizer.tokenize(t['text'])
        x = ["[CLS]"] + x + ["[SEP]"]
        token_ids = tokenizer.convert_tokens_to_ids(x)

        seg_ids = [0] * len(token_ids)
        assert len(token_ids) == len(t['text']) + 2

        token_ids = torch.LongTensor(self.sequence_padding(token_ids, maxlen=maxlen))
        seg_ids = torch.LongTensor(self.sequence_padding(seg_ids, maxlen=maxlen))

        # tri = t['triple_list']
        # print('tri',tri)
        '''
        return {'token_ids':token_ids,
                'seg_ids':seg_ids,
                'text':t['text'],
                'triple_list':t['triple_list']}
        '''
        # return token_ids, seg_ids, list(t['text']), list(t['triple_list'])
        return token_ids, seg_ids, t

    def __len__(self):
        data_len = len(self.data)
        return data_len

    def sequence_padding(self, x, maxlen, padding=0):
        output = np.concatenate([x, [padding] * (maxlen - len(x))]) if len(x) < maxlen else np.array(x[:maxlen])
        return output


valid_dataset = ValidDataset(valid_data)

valid_loader = DataLoader(dataset=valid_dataset, batch_size=args.batch2, shuffle=False, drop_last=True)


def extract_spoes(data, model, device):
    '''
    """抽取三元组"""
    if len(text) > 254:
        text = text[:254]
    tokens = tokenizer.tokenize(text)
    tokens = ["[CLS]"] + tokens + ["[SEP]"]
    token_ids = tokenizer.convert_tokens_to_ids(tokens)
    assert len(token_ids) == len(text) + 2
    seg_ids = [0] * len(token_ids)
    '''
    # print (data[2])
    # print (data['text'])
    # token_ids = data['token_ids']
    token_ids = data[0]

    # seg_ids = data['seg_ids']
    seg_ids = data[1]
    # import pdb
    # pdb.set_trace()
    sub_preds = model(token_ids.to(device),
                      seg_ids.to(device))
    sub_preds = sub_preds.detach().cpu().numpy()  # [1, maxlen, 2]
    # print(sub_preds[0,])
    start = np.where(sub_preds[0, :, 0] > 0.5)[0]
    end = np.where(sub_preds[0, :, 1] > 0.5)[0]
    # print(start, end)
    tmp_print = []
    subjects = []
    for i in start:
        j = end[end >= i]
        if len(j) > 0:
            j = j[0]
            subjects.append((i, j))
            tmp_print.append(data[2][i - 1: j])

    if subjects:
        spoes = []
        # print (len(subjects)) #只有2
        token_ids = np.repeat(token_ids, len(subjects), 0)  # [len_subjects, seqlen]
        # print(token_ids.shape)
        seg_ids = np.repeat(seg_ids, len(subjects), 0)
        subjects = np.array(subjects)  # [len_subjects, 2]
        # 传入subject 抽取object和predicate
        _, object_preds = model(token_ids.to(device),
                                seg_ids.to(device),
                                torch.LongTensor(subjects).to(device))
        object_preds = object_preds.detach().cpu().numpy()
        #         print(object_preds.shape)
        for sub, obj_pred in zip(subjects, object_preds):
            # obj_pred [maxlen, 55, 2]
            start = np.where(obj_pred[:, :, 0] > 0.3)
            end = np.where(obj_pred[:, :, 1] > 0.3)
            for _start, predicate1 in zip(*start):
                for _end, predicate2 in zip(*end):
                    if _start <= _end and predicate1 == predicate2:
                        spoes.append(
                            ((sub[0] - 1, sub[1] - 1), predicate1, (_start - 1, _end - 1))
                        )
                        break
        # print (spoes)
        return [(data[2][s[0]:s[1] + 1], id2predicate[str(p)], data[2][o[0]:o[1] + 1]) for s, p, o in spoes]
    else:
        return []


def evaluate(valid_data, valid_load, model, device):
    """评估函数,计算f1、precision、recall
    """
    # F1 = []
    # P = []
    # Re = []
    X, Y, Z = 1e-10, 1e-10, 1e-10
    f = open("./data/CMED/dev_pred.json", 'w', encoding='utf-8')
    pbar = tqdm()
    # for d in data:
    # with torch.no_grad:
    # print (type(valid_load))
    # return
    for idx, data in tqdm(enumerate(valid_load)):

        input = data[0], data[1], data[2]['text'][0]
        # print(input)
        # input = data[0], data[1], valid_data[idx]['text'], valid_data[idx]['triple_list']
        R = extract_spoes(input, model, device)
        # print ('R:',R)
        T = valid_data[idx]['triple_list']
        '''
        tri = data[3]
        #tri = tuple(tri)
        T = []
        for tris in tri:
            temp = tuple()
            for i in tris:
                temp += i
            T.append(temp)
        '''
        # print ('tri:',tri)
        # print ('tri:',temp_tri)
        R = set(R)
        # print ('R',R)
        T = set(T)
        # print('T', R)
        X += len(R & T)
        Y += len(R)
        Z += len(T)
        f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
        # F1.append(f1)
        # P.append(precision)
        # Re.append(recall)
        pbar.update()
        pbar.set_description(
            'F1: %.5f, \tPrecision: %.5f, \tRecall: %.5f' % (f1, precision, recall)
        )

        if f1 > 0.5:
            s = json.dumps({
                'text': valid_data[idx]['text'],
                'triple_list': list(T),
                'triple_list_pred': list(R),
                'new': list(R - T),
                'lack': list(T - R),
            }, ensure_ascii=False, indent=4)
            f.write(s + '\n')
    pbar.close()
    f.close()
    return f1, precision, recall


'''        
def evaluate(data, model, device):
    """评估函数,计算f1、precision、recall
    """
    X, Y, Z = 1e-10, 1e-10, 1e-10
    f = open("/home/jason/EXP/NLP/triple_test/data/CMED/dev_pred.json", 'w', encoding='utf-8')
    pbar = tqdm()
    for d in data:    
        R = extract_spoes(d['text'], model, device)

        T = d['triple_list']
        #print (T)
        R = set(R)
        #print ('R',R)
        T = set(T)

        #T = set()
        #for item in T1:
        #  for i in item:
        #    T.add(i)

        #print ('T',T)
        X += len(R & T)
        Y += len(R)
        Z += len(T)
        f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
        pbar.update()
        pbar.set_description(
            'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
        )

        if f1 > 0.5: 

          s = json.dumps({
              'text': d['text'],
              'triple_list': list(T),
              'triple_list_pred': list(R),
              'new': list(R - T),
              'lack': list(T - R),
          }, ensure_ascii=False, indent=4)
          f.write(s + '\n')
    pbar.close()
    f.close()
    return f1, precision, recall
'''
import sys
import os
class Logger(object):
    def __init__(self,fileN="default.log"):
        self.terminal = sys.stdout
        self.log = open(fileN,"a")
    def write(self,message):
        self.terminal.write(message)
        self.log.write(message)
    def flush(self):
        pass

# def FocalLoss(input, target ,gamma=2,weight=None,reduction='mean'):
#     # def __init__(self,gamma=2,weight=None,reduction='mean'):
#     #     super(FocalLoss, self).__init__()
#     #     self.gamma = gamma
#     #     self.weight = weight
#     #     self.reduction = reduction
#     # def forward(self, output, target):
#     out_target = torch.stack([input[i,t] for i.type(torch.bool),t.type(torch.bool) in enumerate(target)])
#     probs = torch.sigmoid(out_target)
#     focal_weight = torch.pow(1-probs,gamma=2)
#
#     ce_loss = F.cross_entropy(input,target,weight=None,reduction='none')
#     focal_loss = focal_weight*ce_loss
#
#     if reduction == 'mean':
#         focal_loss = (focal_loss/focal_weight.sum()).sum()
#     elif reduction == 'sum':
#         focal_loss = focal_loss.sum()
#
#     return focal_loss
# class FocalLoss(nn.Module):
#
#     def __init__(self, weight=None, reduction='mean', gamma=0, eps=1e-7):
#         super(FocalLoss, self).__init__()
#         self.gamma = gamma
#         self.eps = eps
#         self.ce = torch.nn.CrossEntropyLoss(weight=weight, reduction=reduction)
#
#     def forward(self, input, target):
#         logp = self.ce(input, target)
#         print('logp',logp)
#         p = torch.exp(-logp)
#         loss = (1 - p) ** self.gamma * logp
#         return loss.mean()

# def Dice_loss(inputs,target,beta=1,smooth=1e-5):
#     n,c,h = inputs.size()
#     nt,ht,wt = target.size()
#     if n!= nt and h!=wt:
#         inputs = F.interpolate(inputs,size=(ht,wt),mode="bilinear",align_corners=True)
#     temp_imputs = torch.softmax(inputs.transpose(1,2).transpose(2,3).contiguous().view(n,-1,c),-1)
#     temp_target = target.view(n,-1,ct)
#
#     #......................
#     #ice loss
#     #......................
#     tp = torch.sum(temp_target[...,:-1]*temp_imputs,axis=[0,1])
#     fp = torch.sum(temp_imputs,axis=[0,1])-tp
#     fn = torch.sum(temp_target[...,:-1],axis=[0,1])-tp
#
#     score = ((1+beta**2)*tp+smooth)/((1+beta**2)*tp+beta**2*fn+fp+smooth)
#     dice_loss = 1-torch.mean(score)
#     return dice_loss


# def dice_coeff(pred, target):
#     smooth = 1.
#     num = pred.size(0)
#     m1 = pred.view(num, -1)  # Flatten
#     m2 = target.view(num, -1)  # Flatten
#     intersection = (m1 * m2).sum()
#
#     return (2. * intersection + smooth) / (m1.sum() + m2.sum() + smooth)


# def train(model, train_loader, optimizer, epoches, device):
#     # model.train()
#     torch.backends.cudnn.enabled = False
#     for _ in range(epoches):
#         print('epoch: ', _ + 1)
#         start = time.time()
#         train_loss_sum = 0.0
#         for batch_idx, x in tqdm(enumerate(train_loader)):
#             # token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
#             token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
#             # tokens_words, masks_out, head = x[5].to(device), x[6].to(device), x[7].to(device)
#             # print (token_ids.shape)
#
#             mask = (token_ids > 0).float()
#             mask = mask.to(device)  # zero-mask
#             sub_labels, obj_labels = x[3].float().to(device), x[4].float().to(device)
#             sub_preds, obj_preds = model(token_ids, seg_ids, sub_ids)
#             # (batch_size, maxlen, 2),  (batch_size, maxlen, 55, 2)
#
#             #计算loss
#             smooth = 1
#             intersection = sub_labels * sub_preds
#             sub_dice_eff = (2 * intersection.sum(1) + smooth) / (sub_preds.sum(1) + sub_labels.sum(1) + smooth)
#             # print(sub_dice_eff)
#             smooth = 1
# #             intersection2 = obj_labels * obj_preds
# #             obj_dice_eff = (2 * intersection2.sum(1) + smooth) / (obj_preds.sum(1) + obj_labels.sum(1) + smooth)
# #             # print(obj_dice_eff)
# #             beta = 1
# #             smooth = 1e-5
# #             p = torch.sigmoid(sub_preds)
# #             tp = torch.sum(sub_labels[..., :-1] * p, axis=[0, 1])
# #             # print(tp)
# #             fp = torch.sum(p, axis=[0, 1]) - tp
# #             # print(fp)
# #             fn = torch.sum(sub_labels[..., :-1], axis=[0, 1]) - tp
# #             score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
# #             sub_dice_loss = 1-torch.mean(score)
# #             # print(sub_dice_loss)
# #             ce_loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none')  # [bs, ml, 2]
# #             p_t = p*sub_labels + (1-p)*(1-sub_labels)
# #             gamma = 2
# #             loss_sub= ce_loss_sub*((1-p_t)**gamma)
#
#             q = torch.sigmoid(obj_preds)
#             # print(q)
#             tp = torch.sum(obj_labels[..., :-1] * q, axis=[0, 1])
#             # print(tp)
#             fp = torch.sum(q, axis=[0, 1]) - tp
#             # print(fp)
#             fn = torch.sum(obj_labels[..., :-1], axis=[0, 1]) - tp
#             score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
#             obj_dice_loss = 1 - torch.mean(score)
#             # print(obj_dice_loss)

            # loss_sub = torch.mean(loss_sub, 2)  # (batch_size, maxlen)
            # loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
            # # print('loss_sub:',loss_sub)
            # q = torch.sigmoid(obj_preds)
            # ce_loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none')  # [bs, ml, 55, 2]
            # q_t = q * obj_labels + (1 - q) * (1 - obj_labels)
            # gamma = 2
            # loss_obj = ce_loss_obj * ((1 - q_t) ** gamma)
            # loss_obj = torch.sum(torch.mean(loss_obj, 3), 2)  # (bs, maxlen)
            # loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
            # loss = loss_sub + loss_obj
            # loss_sub = dice_coeff(sub_preds, sub_labels)
            # loss_obj = dice_coeff(obj_preds, obj_labels)
            # loss = loss_sub+ loss_obj
#             # 计算loss
#             loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none')  # [bs, ml, 2]
#             loss_sub = torch.mean(loss_sub, 2)  # (batch_size, maxlen)
#             loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
#             loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none')  # [bs, ml, 55, 2]
#             loss_obj = torch.sum(torch.mean(loss_obj, 3), 2)  # (bs, maxlen)
#             loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
#             loss = loss_sub + loss_obj
#             optimizer.zero_grad()
#
#             loss.backward()
#             optimizer.step()
#             train_loss_sum += loss.cpu().item()
#             if (batch_idx + 1) % 31 == 0:
#                 print('loss: ', train_loss_sum / (batch_idx + 1), 'time: ', time.time() - start)
#
#         torch.save(net.state_dict(), "./checkpoints/best_re.pth")
#
#         with torch.no_grad():
#             # model.eval()
#             # print (valid_data[:5])
#             val_f1, pre, rec = evaluate(valid_data, valid_loader, net, device)
#
#             print('F1_score: %.5f, Precision: %.5f, Recall: %.5f' % (val_f1, pre, rec))
#         # sys.stdout = Logger('./datalog.txt')
#             re = tuple((val_f1, pre, rec))
#             with open("./result_Dice_loss.json","a",encoding='utf-8') as f:
#                  json.dump(re,f,indent=4,ensure_ascii=True)
#             # print("f1, pre, rec: ", val_f1, pre, rec)
class FocalLoss(nn.Module):

    def __init__(self, alpha=1, gamma=2, size_average=True, ignore_index=255):
        super(FocalLoss, self).__init__()
        self.alpha = alpha
        self.gamma = gamma
        self.ignore_index = ignore_index
        self.size_average = size_average

    def forward(self, inputs, targets):
        ce_loss = F.class_entropy(inputs, targets, reduction='none',ignore_index=self.ignore_index)
        pt = torch.exp(-ce_loss)
        focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
        return focal_loss.sum()

def train(model, train_loader, optimizer, epoches, device):
    # model.train()
    torch.backends.cudnn.enabled = False
    list = []
    for _ in range(epoches):
        # f = open("./test.txt", 'w+', encoding='utf-8')
        print('epoch: ', _ + 1)
        start = time.time()
        train_loss_sum = 0.0
        for batch_idx, x in tqdm(enumerate(train_loader)):
            # token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
            token_ids, seg_ids, sub_ids = x[0].to(device), x[1].to(device), x[2].to(device)
            # tokens_words, masks_out, head = x[5].to(device), x[6].to(device), x[7].to(device)
            # print (token_ids.shape)

            mask = (token_ids > 0).float()
            mask = mask.to(device)  # zero-mask
            sub_labels, obj_labels = x[3].float().to(device), x[4].float().to(device)
            sub_preds, obj_preds = model(token_ids, seg_ids, sub_ids)
            # (batch_size, maxlen, 2),  (batch_size, maxlen, 55, 2)

            # 计算loss
            smooth = 1
            intersection2 = obj_labels * obj_preds
            obj_dice_eff = (2 * intersection2.sum(1) + smooth) / (obj_preds.sum(1) + obj_labels.sum(1) + smooth)
            # print(obj_dice_eff)
            beta = 1
            smooth = 1e-5
            p = torch.sigmoid(sub_preds)
            tp = torch.sum(sub_labels[..., :-1] * p, axis=[0, 1])
            # print(tp)
            fp = torch.sum(p, axis=[0, 1]) - tp
            # print(fp)
            fn = torch.sum(sub_labels[..., :-1], axis=[0, 1]) - tp
            score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
            sub_dice_loss = 1-torch.mean(score)
            # print(sub_dice_loss)
            ce_loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none')  # [bs, ml, 2]
            p_t = p*sub_labels + (1-p)*(1-sub_labels)
            gamma = 2
            loss_sub= ce_loss_sub*((1-p_t)**gamma)

            q = torch.sigmoid(obj_preds)
            # print(q)
            tp = torch.sum(obj_labels[..., :-1] * q, axis=[0, 1])
            # print(tp)
            fp = torch.sum(q, axis=[0, 1]) - tp
            # print(fp)
            fn = torch.sum(obj_labels[..., :-1], axis=[0, 1]) - tp
            score = ((1 + beta ** 2) * tp + smooth) / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
            obj_dice_loss = 1 - torch.mean(score)
            # print(obj_dice_loss)
            loss_sub = torch.mean(loss_sub, 2)  # (batch_size, maxlen)
            loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
            # print('loss_sub:',loss_sub)
            q = torch.sigmoid(obj_preds)
            ce_loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none')  # [bs, ml, 55, 2]
            q_t = q * obj_labels + (1 - q) * (1 - obj_labels)
            gamma = 2
            loss_obj = ce_loss_obj * ((1 - q_t) ** gamma)
            loss_obj = torch.sum(torch.mean(loss_obj, 3), 2)  # (bs, maxlen)
            loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)

            # jiaochashang
            # loss_sub = F.binary_cross_entropy(sub_preds, sub_labels, reduction='none')  # [bs, ml, 2]
            # loss_sub = torch.mean(loss_sub, 2)  # (batch_size, maxlen)
            # loss_sub = torch.sum(loss_sub * mask) / torch.sum(mask)
            # loss_obj = F.binary_cross_entropy(obj_preds, obj_labels, reduction='none')  # [bs, ml, 55, 2]
            # loss_obj = torch.sum(torch.mean(loss_obj, 3), 2)  # (bs, maxlen)
            # loss_obj = torch.sum(loss_obj * mask) / torch.sum(mask)
            loss = loss_sub + loss_obj
            optimizer.zero_grad()

            loss.backward()

            optimizer.step()
            train_loss_sum += loss.cpu().item()

            if (batch_idx + 1) % 31 == 0:
                print('loss: ', train_loss_sum / (batch_idx + 1), 'time: ', time.time() - start)
        list.append(train_loss_sum / (batch_idx + 1))
        torch.save(net.state_dict(), "./checkpoints/best_re.pth")

        with torch.no_grad():
            # model.eval()
            # print (valid_data[:5])
            val_f1, pre, rec = evaluate(valid_data, valid_loader, net, device)
            print('F1_score: %.5f, Precision: %.5f, Recall: %.5f' % (val_f1, pre, rec))
            # print("f1, pre, rec: ", val_f1, pre, rec)
    print(list)

# LOGGER = set_logging(name='test', level=logging.INFO, verbose=True)


if __name__ == '__main__':
    # net.load_state_dict(torch.load("RE/data/bert_re.pth"))
    train(net, train_loader, optimizer, 600, DEVICE)