File size: 25,187 Bytes
badcf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import pandas as pd
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, roc_auc_score
import os
from bert_score import score as score_bert
from nltk.translate.meteor_score import meteor_score
from nltk.translate.meteor_score import single_meteor_score
import nltk
import jieba
from collections import Counter

# 下载必要的NLTK数据
# nltk.download('punkt')
# nltk.download('wordnet')
# nltk.download('omw-1.4')  # 用于支持多语言WordNet

def calculate_metrics(model_results_paths, data_path='./data/data.xlsx'):
    # 读取真实标签
    true_labels = pd.read_excel(data_path, sheet_name='Yes or No Train')

    for model_results_path in model_results_paths:
        # 读取模型生成的结果
        model_results = pd.read_json(model_results_path)

        # 提取预测和真实标签
        predicted = model_results['answer'].apply(lambda x: 1 if x == 'Yes' else 0)
        true = true_labels['Answer'].apply(lambda x: 1 if x == 'Yes' else 0)

        # 计算各项指标
        accuracy = accuracy_score(true, predicted)
        recall = recall_score(true, predicted)
        precision = precision_score(true, predicted)
        f1 = f1_score(true, predicted)

        # 计算AUROC
        predicted_prob = predicted  # 这里可以根据实际情况调整
        auroc = roc_auc_score(true, predicted_prob)

        # 输出结果
        results = (
            f'模型 {model_results_path} 在数据集上的各项指标如下:\n'
            f'Accuracy: {accuracy:.4f}\n'
            f'Recall: {recall:.4f}\n'
            f'Precision: {precision:.4f}\n'
            f'F1 Score: {f1:.4f}\n'
            f'AUROC: {auroc:.4f}\n'
            '---\n'
        )
        save_path = 'F:\GeoLLM\output\output_result\Task2'
        results_file_path = os.path.join(save_path, 'results_yes_or_no.txt')
        with open(results_file_path, 'a', encoding='utf-8') as f:  # 以追加模式打开文件
            f.write(results)
        print(results)  # 打印输出到控制台

def evaluate_fill_in_the_blank(predicted, true):
    # 处理空值并转换为字符串
    predicted = str(predicted) if not pd.isna(predicted) else ""
    true = str(true) if not pd.isna(true) else ""
    # 检查字符包含关系
    return all(char in predicted for char in true)

def calculate_metrics_f(model_results_paths, data_path='./data/data.xlsx'):
    # 读取真实标签
    true_labels = pd.read_excel(data_path, sheet_name='Factoid Train')
    
    for model_results_path in model_results_paths:
        # 读取模型生成的结果
        model_results = pd.read_json(model_results_path)

        # 生成二进制标签(1=正确,0=错误)
        y_true = []
        y_pred = []
        for pred, tru in zip(model_results['answer'], true_labels['Answer']):
            # 处理空值和类型转换
            pred_clean = str(pred) if not pd.isna(pred) else ""
            tru_clean = str(tru) if not pd.isna(tru) else ""
            
            # 生成真实标签(1=应被正确回答,0=应被错误回答)
            # 注意:这里需要根据实际数据调整逻辑,当前假设所有样本都应正确
            y_true.append(1)  
            
            # 生成预测标签
            is_correct = all(char in pred_clean for char in tru_clean)
            y_pred.append(1 if is_correct else 0)

        # 处理单一类别情况
        if len(set(y_true)) < 2:
            auroc = None
        else:
            try:
                auroc = roc_auc_score(y_true, y_pred)
            except ValueError:
                auroc = None

        # 计算分类指标
        accuracy = accuracy_score(y_true, y_pred)
        recall = recall_score(y_true, y_pred)
        precision = precision_score(y_true, y_pred)
        f1 = f1_score(y_true, y_pred)
        
        # 输出结果
        results = (
            f'模型 {model_results_path} 评估结果:\n'
            f'正确数/总数: {sum(y_pred)}/{len(y_pred)}\n'
            f'Accuracy: {accuracy:.4f}\n'
            f'Recall: {recall:.4f}\n' 
            f'Precision: {precision:.4f}\n'
            f'F1 Score: {f1:.4f}\n'
            f'AUROC: {auroc if auroc is None else f"{auroc:.4f}"}\n'
            '---\n'
        )
        
        print(results)  # 打印输出到控制台

        # 保存结果到results.txt
        # output_dir = os.path.dirname(model_results_path)  # 获取模型结果文件的目录
        # results_file_path = os.path.join(output_dir, 'results_f.txt')

        # with open(results_file_path, 'a', encoding='utf-8') as f:  # 以追加模式打开文件
        #     f.write(results)

def calculate_metrics_Factoid(model_results_paths, data_path='./data/data.xlsx'):
    # 读取真实标签
    true_labels = pd.read_excel(data_path, sheet_name='Factoid Train')
    
    for model_results_path in model_results_paths:
        # 读取模型生成的结果
        model_results = pd.read_json(model_results_path)
        
        # 预处理答案,转换为列表形式
        predictions = []
        references = []
        for pred, ref in zip(model_results['answer'], true_labels['Answer']):
            # 处理空值, 转换为字符串,去除空格
            pred = str(pred).strip() if not pd.isna(pred) else ""
            ref = str(ref).strip() if not pd.isna(ref) else ""
            
            # 使用jieba分词
            pred_tokens = list(jieba.cut(pred))
            ref_tokens = list(jieba.cut(ref))
             
            predictions.append(pred)
            references.append(ref)
            
        # 1. 计算BERT Score
        P, R, F1 = score_bert(predictions, references, lang='zh', verbose=False)# verbose=True 显示详细信息
        bert_precision = P.mean().item()
        bert_recall = R.mean().item()
        bert_f1 = F1.mean().item()
        # 2. 计算METEOR Score及相关指标
        meteor_scores = []
        meteor_precision_scores = []
        meteor_recall_scores = []
        meteor_penalty_scores = []  # initialize your results list
        weighted_harmonic_means = []
        
        # METEOR参数
        ALPHA = 0.9  # 精确率权重
        BETA = 3.0   # 片段惩罚权重
        GAMMA = 0.5  # 惩罚因子
        
        empty_pred = []  # initialize your empty predictions list outside the loop
        
        for pred, ref in zip(predictions, references):
            # 检查原始答案是否为空
            if not pred:
                empty_pred.append(pred)
                print(f"警告:模型发现一个空的预测对。原始预测是:{pred},参考是:{ref}")
            
            pred_tokens = list(jieba.cut(pred))
            ref_tokens = list(jieba.cut(ref))
            
            # 清理分词结果,去除空格
            pred_tokens = [token for token in pred_tokens if token.strip()]
            ref_tokens = [token for token in ref_tokens if token.strip()]
            
            # 基础METEOR分数
            meteor = single_meteor_score(ref_tokens, pred_tokens)
            # print(f"meteor: {meteor}")

            # 使用 Counter 处理重复词
            pred_counter = Counter(pred_tokens)
            ref_counter = Counter(ref_tokens)
            
            matched_count = sum((pred_counter & ref_counter).values())
            
            precision = matched_count / len(pred_tokens) if pred_tokens else 0
            recall = matched_count / len(ref_tokens) if ref_tokens else 0

            # print(f"Precision: {precision}, Recall: {recall}")  # 输出精确率和召回率
            # print(pred)
            # 计算加权调和平均
            if precision > 0 and recall > 0:
                weighted_harmonic_mean = (precision * recall) / (ALPHA * precision + (1 - ALPHA) * recall)
            else:
                weighted_harmonic_mean = 0
            # print(f"weighted_harmonic_mean: {weighted_harmonic_mean}")

            if weighted_harmonic_mean != 0:
                meteor_penalty_score = 1 - (meteor / weighted_harmonic_mean)
            else:
                meteor_penalty_score = 1

            meteor_penalty_scores.append(meteor_penalty_score)

            weighted_harmonic_means.append(weighted_harmonic_mean)
            meteor_precision_scores.append(precision)
            meteor_recall_scores.append(recall)
            meteor_scores.append(meteor)


        # 计算平均分数
        avg_meteor_precision = sum(meteor_precision_scores) / len(meteor_precision_scores) if meteor_precision_scores else 0
        avg_meteor_recall = sum(meteor_recall_scores) / len(meteor_recall_scores) if meteor_recall_scores else 0 
        ave_Fmean = sum(weighted_harmonic_means) / len(weighted_harmonic_means) if weighted_harmonic_means else 0
        avg_meteor_penalty = sum(meteor_penalty_scores) / len(meteor_penalty_scores) if meteor_penalty_scores else 0
        avg_meteor = sum(meteor_scores) / len(meteor_scores) if meteor_scores else 0
        # 空预测率
        empty_pred_rate = len(empty_pred) / len(predictions)
        
        # 输出结果
        results = (
            f'模型 {model_results_path} 评估结果:\n'
            f'\nBERT Score 评估结果:\n'
            f'BERT Precision: {bert_precision:.4f}\n'
            f'BERT Recall: {bert_recall:.4f}\n'
            f'BERT F1: {bert_f1:.4f}\n'
            f'\nMETEOR Score 评估结果:\n'
            f'METEOR Precision: {avg_meteor_precision:.4f}\n'
            f'METEOR Recall: {avg_meteor_recall:.4f}\n'
            f'METEOR Fmean: {ave_Fmean:.4f}\n'
            f'METEOR Penalty (Gamma={GAMMA:.1f},β={BETA:.1f}): {avg_meteor_penalty:.4f}\n'
            f'METEOR Score: {avg_meteor:.4f}\n'
            f'空预测率: {empty_pred_rate:.4f}\n'
            '---\n'
        )
        # save_path = 'F:\GeoLLM\output\output_result\Task2'
        # results_file_path = os.path.join(save_path, 'results_factoid.txt')
        # with open(results_file_path, 'a', encoding='utf-8') as f:  # 以追加模式打开文件
        #     f.write(results)
        print(results)  # 打印输出到控制台

if __name__ == '__main__':
    # # 示例调用
    # model_results_paths = [
    #     # # gpt-3.5-turbo的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/gpt-3.5-turbo_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/gpt-3.5-turbo_f.json',
    #     # # gpt-4o的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/gpt-4o_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/gpt-4o_f.json',
    #     # # gemini-1.5-pro-002的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/gemini-1.5-pro-002_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/gemini-1.5-pro-002_f.json',
    #     # # claude-3-5-haiku-20241022的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/claude-3-5-haiku-20241022_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/claude-3-5-haiku-20241022_f.json',
    #     # # deepseek-ai/DeepSeek-V3的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/deepseek-ai/DeepSeek-V3_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/deepseek-ai/DeepSeek-V3_f.json',
    #     # # deepseek-ai/DeepSeek-R1的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/deepseek-ai/DeepSeek-R1_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/deepseek-ai/DeepSeek-R1_f.json',
    #     # # meta-llama/Meta-Llama-3.1-405B-Instruct的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/meta-llama/Meta-Llama-3.1-405B-Instruct_f.json',
    #     # # Qwen/Qwen2.5-72B-Instruct的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot/Qwen/Qwen2.5-72B-Instruct_f.json',
    #     # cot_new的八个测试
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/gpt-3.5-turbo_f_processed.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/gpt-4o_f_processed.json',
    #     'F:/GeoLLM/output/output_result/Task2/cot/cot_new/gemini-1.5-pro-002_f_processed.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/claude-3-5-haiku-20241022_f_processed.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/DeepSeek-V3_f_processed.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/DeepSeek-R1_f_processed.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/Meta-Llama-3.1-405B-Instruct_f_processed.json',
    #     # 'F:/GeoLLM/output/output_result/Task2/cot/cot_new/Qwen2.5-72B-Instruct_f_processed.json',
    # ]
    # data_path = './data/data.xlsx'
    # calculate_metrics_Factoid(model_results_paths, data_path)
        # 示例调用
    model_results_paths = [
        # # gpt-3.5-turbo的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/gpt-3.5-turbo.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/gpt-3.5-turbo.json',
        # # gpt-4o的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/gpt-4o.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/gpt-4o.json',
        # # gemini-1.5-pro-002的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/gemini-1.5-pro-002.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/gemini-1.5-pro-002.json',
        # # claude-3-5-haiku-20241022的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/claude-3-5-haiku-20241022.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/claude-3-5-haiku-20241022.json',
        # # deepseek-ai/DeepSeek-V3的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/deepseek-ai/DeepSeek-V3.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/deepseek-ai/DeepSeek-V3.json',
        # # deepseek-ai/DeepSeek-R1的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/deepseek-ai/DeepSeek-R1.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/deepseek-ai/DeepSeek-R1.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/deepseek-ai/DeepSeek-R1.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/deepseek-ai/DeepSeek-R1.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/deepseek-ai/DeepSeek-R1.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/deepseek-ai/DeepSeek-R1.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/deepseek-ai/DeepSeek-R1.json',
        # # meta-llama/Meta-Llama-3.1-405B-Instruct的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/meta-llama/Meta-Llama-3.1-405B-Instruct.json',
        # # Qwen/Qwen2.5-72B-Instruct的八个测试
        # 'F:/GeoLLM/output/output_result/Task2/nomal/zero_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/one_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/two_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/nomal/three_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/one_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/two_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/knn/three_shot/Qwen/Qwen2.5-72B-Instruct.json',
        # 'F:/GeoLLM/output/output_result/Task2/cot/cot/Qwen/Qwen2.5-72B-Instruct.json',

        'F:/GeoLLM/Task2/output/nomal1/zero_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/nomal1/one_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/nomal1/two_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/nomal1/three_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/knn1/one_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/knn1/two_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/knn1/three_shot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/knn1/three_shot/gpt-3.5-turbo_old2.json',     
        'F:/GeoLLM/Task2/output/knn1/three_shot/gpt-3.5-turbo_old1.json',     
        'F:/GeoLLM/Task2/output/cot1/cot/gpt-3.5-turbo.json',
        'F:/GeoLLM/Task2/output/cot1/cot/gpt-3.5-turbo_old.json',


    ]
    data_path = './data/data.xlsx'
    calculate_metrics(model_results_paths, data_path)