Spaces:
Runtime error
Runtime error
File size: 14,545 Bytes
badcf3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import numpy as np
from rouge_score import rouge_scorer
from bert_score import score as score_bert
from nltk.translate.bleu_score import sentence_bleu
from nltk.translate.bleu_score import SmoothingFunction
from scipy.optimize import linear_sum_assignment
from spacy.tokenizer import Tokenizer
# from spacy.lang.en import English
from spacy.lang.zh import Chinese
import re
import networkx as nx
from sklearn import preprocessing
from sklearn.metrics import precision_score, recall_score, f1_score
import json
# 修改图
def modify_graph(original_graph):
modified_graph = []
for x in original_graph:
# modified_graph.append([str(t).strip() for t in x])
# 将所有元素转换为字符串,去除首尾的空格(无需转换大小写)
modified_graph.append([str(t).strip() for t in x])
return modified_graph
# 获取三元组匹配的F1分数
def get_triple_match_f1(gold_graphs, pred_graphs):
# 1. 预处理:标准化格式,确保所有数据类型一致
# 2. 使用MultiLabelBinarizer将三元组转换为二进制矩阵
# 3. 计算精确率、召回率和F1
new_gold_graphs = [modify_graph(graph) for graph in gold_graphs]
new_pred_graphs = [modify_graph(graph) for graph in pred_graphs]
new_gold_graphs_list = [[str(string) for string in sublist] for sublist in new_gold_graphs]
new_pred_graphs_list = [[str(string) for string in sublist] for sublist in new_pred_graphs]
# 获取所有类
#First get all the classes by combining the triples in the pred_graphs and gold_graphs
allclasses = new_pred_graphs_list + new_gold_graphs_list
allclasses = [item for items in allclasses for item in items]
allclasses = list(set(allclasses))
lb = preprocessing.MultiLabelBinarizer(classes=allclasses)
# 将三元组转换为二进制矩阵
mcbin = lb.fit_transform(new_pred_graphs_list)
mrbin = lb.fit_transform(new_gold_graphs_list)
# 计算精确率、召回率和F1
precision = precision_score(mrbin, mcbin, average='micro')
recall = recall_score(mrbin, mcbin, average='micro')
f1 = f1_score(mrbin, mcbin, average='micro')
print('Full triple scores')
print('-----------------------------------------------------------------')
print('Precision: ' + str(precision) + ' Recall: ' + str(recall) + '\nF1: ' + str(f1))
return f1
def get_triple_match_accuracy(pred_graph, gold_graph):
"""
计算三元组匹配准确率:
直接比较预测和真实三元组是否完全相同,不考虑图结构
返回预测三元组中与真实三元组完全匹配的比例
"""
pred = modify_graph(pred_graph)
gold = modify_graph(gold_graph)
matchs = 0
for x in pred:
if x in gold:
matchs += 1
acc = matchs/len(pred)
return acc
def get_graph_match_accuracy(pred_graphs, gold_graphs):
"""
计算图匹配准确率:
将三元组转换为有向图,考虑节点和边的连接关系
通过图同构判断两个图的结构是否完全相同
返回预测图与真实图完全同构的比例
"""
matchs = 0
for pred, gold in zip(pred_graphs, gold_graphs):
g1 = nx.DiGraph()
g2 = nx.DiGraph()
for edge in gold:
g1.add_node(str(edge[0]).strip(), label=str(edge[0]).strip())
g1.add_node(str(edge[2]).strip(), label=str(edge[2]).strip())
g1.add_edge(str(edge[0]).strip(), str(edge[2]).strip(), label=str(edge[1]).strip())
for edge in pred:
if len(edge) == 2:
edge.append('NULL')
elif len(edge) == 1:
edge.append('NULL')
edge.append('NULL')
g2.add_node(str(edge[0]).strip(), label=str(edge[0]).strip())
g2.add_node(str(edge[2]).strip(), label=str(edge[2]).strip())
g2.add_edge(str(edge[0]).strip(), str(edge[2]).strip(), label=str(edge[1]).strip())
if nx.is_isomorphic(g1, g2, edge_match=lambda x, y: x == y):
matchs += 1
acc = matchs/len(pred_graphs)
return acc
def get_tokens(gold_edges, pred_edges):
nlp = Chinese() # 使用中文分词器
# tokenizer = Tokenizer(nlp.vocab, infix_finditer=re.compile(r'''[;]''').finditer)
tokenizer = Tokenizer(nlp.vocab,
infix_finditer=re.compile(r'''[;|,|。]''').finditer,
prefix_search=re.compile(r'''^[【(\[[]''').search,
suffix_search=re.compile(r'''[】)\]]]$''').search)
gold_tokens = []
pred_tokens = []
for i in range(len(gold_edges)):
gold_tokens_edges = []
pred_tokens_edges = []
for sample in tokenizer.pipe(gold_edges[i]):
gold_tokens_edges.append([j.text for j in sample])
for sample in tokenizer.pipe(pred_edges[i]):
pred_tokens_edges.append([j.text for j in sample])
gold_tokens.append(gold_tokens_edges)
pred_tokens.append(pred_tokens_edges)
return gold_tokens, pred_tokens
def split_to_edges(graphs):
processed_graphs = []
for graph in graphs:
#print(graph)
processed_graphs.append([";".join(triple).strip() for triple in graph])
return processed_graphs
def get_bert_score(all_gold_edges, all_pred_edges):
references = []
candidates = []
ref_cand_index = {}
for (gold_edges, pred_edges) in zip(all_gold_edges, all_pred_edges):
for (i, gold_edge) in enumerate(gold_edges):
for (j, pred_edge) in enumerate(pred_edges):
references.append(gold_edge)
candidates.append(pred_edge)
ref_cand_index[(gold_edge, pred_edge)] = len(references) - 1
_, _, bs_F1 = score_bert(cands=candidates, refs=references, lang='en', idf=False)
print("Computed bert scores for all pairs")
precisions, recalls, f1s = [], [], []
for (gold_edges, pred_edges) in zip(all_gold_edges, all_pred_edges):
score_matrix = np.zeros((len(gold_edges), len(pred_edges)))
for (i, gold_edge) in enumerate(gold_edges):
for (j, pred_edge) in enumerate(pred_edges):
score_matrix[i][j] = bs_F1[ref_cand_index[(gold_edge, pred_edge)]]
row_ind, col_ind = linear_sum_assignment(score_matrix, maximize=True)
sample_precision = score_matrix[row_ind, col_ind].sum() / len(pred_edges)
sample_recall = score_matrix[row_ind, col_ind].sum() / len(gold_edges)
precisions.append(sample_precision)
recalls.append(sample_recall)
f1s.append(2 * sample_precision * sample_recall / (sample_precision + sample_recall))
return np.array(precisions), np.array(recalls), np.array(f1s)
# Note: These graph matching metrics are computed by considering each graph as a set of edges and each edge as a
# sentence
def get_bleu_rouge(gold_tokens, pred_tokens, gold_sent, pred_sent):
scorer_rouge = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rouge3', 'rougeL'], use_stemmer=True)
precisions_bleu = []
recalls_bleu = []
f1s_bleu = []
precisions_rouge = []
recalls_rouge = []
f1s_rouge = []
for graph_idx in range(len(gold_tokens)):
score_bleu = np.zeros((len(pred_tokens[graph_idx]), len(gold_tokens[graph_idx])))
score_rouge = np.zeros((len(pred_tokens[graph_idx]), len(gold_tokens[graph_idx])))
for p_idx in range(len(pred_tokens[graph_idx])):
for g_idx in range(len(gold_tokens[graph_idx])):
score_bleu[p_idx, g_idx] = sentence_bleu([gold_tokens[graph_idx][g_idx]], pred_tokens[graph_idx][p_idx], smoothing_function=SmoothingFunction().method1)
# # 将token列表转换为字符串
# gold_text = ' '.join(gold_tokens[graph_idx][g_idx])
# pred_text = ' '.join(pred_tokens[graph_idx][p_idx])
# score_rouge[p_idx, g_idx] = scorer_rouge.score(gold_text, pred_text)['rouge2'].precision
score_rouge[p_idx, g_idx] = \
scorer_rouge.score(gold_sent[graph_idx][g_idx], pred_sent[graph_idx][p_idx])['rouge2'].fmeasure # 使用F1而不是precision
def _scores(cost_matrix):
row_ind, col_ind = linear_sum_assignment(cost_matrix, maximize=True)
precision = cost_matrix[row_ind, col_ind].sum() / cost_matrix.shape[0]
recall = cost_matrix[row_ind, col_ind].sum() / cost_matrix.shape[1]
f1 = (2 * precision * recall) / (precision + recall) if precision + recall > 0 else 0
return precision, recall, f1
precision_bleu, recall_bleu, f1_bleu = _scores(score_bleu)
precisions_bleu.append(precision_bleu)
recalls_bleu.append(recall_bleu)
f1s_bleu.append(f1_bleu)
precision_rouge, recall_rouge, f1_rouge = _scores(score_rouge)
precisions_rouge.append(precision_rouge)
recalls_rouge.append(recall_rouge)
f1s_rouge.append(f1_rouge)
return np.array(precisions_rouge), np.array(recalls_rouge), np.array(f1s_rouge), np.array(
precisions_bleu), np.array(recalls_bleu), np.array(f1s_bleu)
def return_eq_node(node1, node2):
return node1['label'] == node2['label']
def return_eq_edge(edge1, edge2):
return edge1['label'] == edge2['label']
def get_ged(gold_graph, pred_graph=None):
g1 = nx.DiGraph()
g2 = nx.DiGraph()
for edge in gold_graph:
g1.add_node(str(edge[0]).strip(), label=str(edge[0]).strip())
g1.add_node(str(edge[2]).strip(), label=str(edge[2]).strip())
g1.add_edge(str(edge[0]).strip(), str(edge[2]).strip(), label=str(edge[1]).strip())
# The upper bound is defined wrt the graph for which GED is the worst.
# Since ExplaGraphs (by construction) allows a maximum of 8 edges, the worst GED = gold_nodes + gold_edges + 8 + 9.
# This happens when the predicted graph is linear with 8 edges and 9 nodes.
# In such a case, for GED to be the worst, we assume that all nodes and edges of the predicted graph are deleted and
# then all nodes and edges of the gold graph are added.
# Note that a stricter upper bound can be computed by considering some replacement operations but we ignore that for convenience
normalizing_constant = g1.number_of_nodes() + g1.number_of_edges() + 30
if pred_graph is None:
return 1
for edge in pred_graph:
if len(edge) == 2:
edge.append('NULL')
elif len(edge) == 1:
edge.append('NULL')
edge.append('NULL')
g2.add_node(str(edge[0]).strip(), label=str(edge[0]).strip())
g2.add_node(str(edge[2]).strip(), label=str(edge[2]).strip())
g2.add_edge(str(edge[0]).strip(), str(edge[2]).strip(), label=str(edge[1]).strip())
ged = nx.graph_edit_distance(g1, g2, node_match=return_eq_node, edge_match=return_eq_edge)
assert ged <= normalizing_constant
return ged / normalizing_constant
def clean_and_validate_data(gold_graphs, pred_graphs):
"""清理和验证数据"""
valid_gold = []
valid_pred = []
for gold, pred in zip(gold_graphs, pred_graphs):
# 确保两者都不为空
if gold and pred and isinstance(gold, list) and isinstance(pred, list):
valid_gold.append(gold)
valid_pred.append(pred)
return valid_gold, valid_pred
def evaluate_triples(gold_graphs, pred_graphs):
print("开始评估...")
print("="*50)
# 清理和验证数据
gold_graphs, pred_graphs = clean_and_validate_data(gold_graphs, pred_graphs)
if not gold_graphs or not pred_graphs:
print("警告:没有有效的评估数据!")
return None
# 1. Triple Match F1
try:
triple_f1 = get_triple_match_f1(gold_graphs, pred_graphs)
print(f"三元组匹配F1分数: {triple_f1:.4f}")
except Exception as e:
print(f"计算Triple Match F1出错: {str(e)}")
triple_f1 = 0.0
# 2. Graph Match Accuracy
try:
graph_acc = get_graph_match_accuracy(pred_graphs, gold_graphs)
print(f"图匹配准确率: {graph_acc:.4f}")
except Exception as e:
print(f"计算Graph Match Accuracy出错: {str(e)}")
graph_acc = 0.0
# 防止除零错误
def safe_divide(a, b):
return a / b if b != 0 else 0.0
# 修改BERT Score计算
gold_edges = split_to_edges(gold_graphs)
pred_edges = split_to_edges(pred_graphs)
if any(gold_edges) and any(pred_edges):
precisions_BS, recalls_BS, f1s_BS = get_bert_score(gold_edges, pred_edges)
print(f"BERT Score:")
print(f"- Precision: {safe_divide(precisions_BS.sum(), len(precisions_BS)):.4f}")
print(f"- Recall: {safe_divide(recalls_BS.sum(), len(recalls_BS)):.4f}")
print(f"- F1: {safe_divide(f1s_BS.sum(), len(f1s_BS)):.4f}")
# ... 其余评估代码 ...
def load_data(gold_path, pred_path):
try:
# 加载真实数据
with open(gold_path, 'r', encoding='utf-8') as f:
gold_data = json.load(f)
# 加载预测数据
with open(pred_path, 'r', encoding='utf-8') as f:
pred_data = json.load(f)
# 数据验证
if not isinstance(gold_data, list) or not isinstance(pred_data, list):
print("警告:数据格式不正确,应为列表格式")
return [], []
# 提取并验证三元组列表
gold_graphs = []
pred_graphs = []
for pred_item in pred_data:
if not isinstance(pred_item, dict) or 'text' not in pred_item or 'triple_list' not in pred_item:
continue
pred_text = pred_item['text']
for gold_item in gold_data:
if gold_item.get('text') == pred_text:
if gold_item.get('triple_list') and pred_item.get('triple_list'):
gold_graphs.append(gold_item['triple_list'])
pred_graphs.append(pred_item['triple_list'])
break
print(f"加载的数据数量: Gold={len(gold_graphs)}, Pred={len(pred_graphs)}")
print("Gold样本:", gold_graphs[0] if gold_graphs else "空")
print("Pred样本:", pred_graphs[0] if pred_graphs else "空")
return gold_graphs, pred_graphs
except Exception as e:
print(f"加载数据时出错: {str(e)}")
return [], []
|