File size: 44,896 Bytes
badcf3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
\documentclass[11pt]{article}
\usepackage[sc]{mathpazo} %Like Palatino with extensive math support
\usepackage{fullpage}
\usepackage[authoryear,sectionbib,sort]{natbib}
\linespread{1.7}
\usepackage[utf8]{inputenc}
\usepackage{lineno}
\usepackage{titlesec}
\titleformat{\section}[block]{\Large\bfseries\filcenter}{\thesection}{1em}{}
\titleformat{\subsection}[block]{\Large\itshape\filcenter}{\thesubsection}{1em}{}
\titleformat{\subsubsection}[block]{\large\itshape}{\thesubsubsection}{1em}{}
\titleformat{\paragraph}[runin]{\itshape}{\theparagraph}{1em}{}[. ]
\usepackage{fancyhdr}
\pagestyle{fancy}

\usepackage{minted}
\newminted{python}{}

\usepackage{xcolor} % to access the named colour LightGray
\definecolor{LightGray}{gray}{0.95}

\usepackage{dirtree}

\setlength{\parskip}{6pt} 
\setlength{\parindent}{0pt}

%%%%%%%%%%%%%%%%%%%%%
% Header
%%%%%%%%%%%%%%%%%%%%%
%
% Customize the line below with the last name of your first author and
% the short title of your MS. You can comment authorship information out
% while your MS is undergoing double-blind review.
%
\rhead{Ge et al., \textit{preprint submitted to Engineering Geology}}
\setlength{\headsep}{0.3in}  
\lhead{} 

%%%%%%%%%%%%%%%%%%%%%
% Line numbering
%%%%%%%%%%%%%%%%%%%%%
%
% Please use line numbering with your initial submission and
% subsequent revisions. After acceptance, please turn line numbering
% off by adding percent signs to the lines %\usepackage{lineno} and
% to %\linenumbers{} and %\modulolinenumbers[3] below.
%
% To avoid line numbering being thrown off around math environments,
% the math environments have to be wrapped using
% \begin{linenomath*} and \end{linenomath*}
%
% (Thanks to Vlastimil Krivan for pointing this out to us!)

\title{Appendix: \\ 
Benchmarking Large Language Models in Geological Natural Language Processing}


\author{Qi Ge$^{1}$ \\ 
Pengfa Li$^{2}$ \\ 
Jin Li$^{2}$  \\
Yiyan Deng$^{2}$ \\ 
Hongyue Sun$^{3,\ast}$ \\ 
Zhongqiang Liu$^{4,\ast}$ \\ 
}


\date{}

\begin{document}

\maketitle

\noindent{} 1. College of Civil Engineering, Nanjing Forestry University;

\noindent{} 2. School of Artificial Intelligence, Nanjing University of Information Science and Technology;

\noindent{} 3. Ocean College, Zhejiang University;

\noindent{} 4. Department of Natural Hazards, Norwegian Geotechnical Institute.

\noindent{} $\ast$ Corresponding authors; e-mails: [email protected], [email protected].


%\linenumbers{}
%\modulolinenumbers[3]


\renewcommand{\theequation}{S\arabic{equation}}
% redefine the command that creates the equation number.
\renewcommand{\thetable}{S\arabic{table}}
\renewcommand{\thesection}{S\arabic{section}}
\renewcommand{\thefigure}{S\arabic{figure}}
\setcounter{equation}{0}  % reset counter 
\setcounter{figure}{0}
\setcounter{table}{0}


\newpage{}

\section*{Supplementary code}

The Python codebase for the LLM benchmark code for this study is saved in a directory named "Geo-LLM-Benchmarks" which contains several components:

\vspace{12pt}
\dirtree{%
.1 GeoLLM.
.2 data.
.3 Task1.
.4 .....
.3 Task2.
.4 .....
.2 docs.
.3 Readme.txt.
.3 requirements.txt.
.2 scripts.
.3 Task1.
.4 KNN\_token.py.
.3 Task2.
.4 cot\_process.py.
.4 KNN.py.
.4 utils.
.5 LLM\_APIs.txt.
.5 LLM.py.
.2 tasks.
.3 task1.
.4 eval.py.
.4 Task1\_test.ipynb.
.4 metrics.
.5 graph\_matching.py.
.4 utils.
.5 LLM\_APIs.txt.
.5 LLM.py.
.3 task2.
.4 eval.py.
.4 pretreatment\_split\_data\_Geo.py.
.4 Task2\_test.ipynb.
.4 utils.
.5 knn\_prompt.py.
.5 LLM\_APIs.txt.
.5 save\_response.py.
.5 promp\_get.py.
}
\vspace{3pt}

The LiteTransNet codebase is a structured collection of files and directories for LiteTransNet model. Below is an introduction to the function of each component within the \texttt{"lite-trans-net"} directory:

\begin{itemize}
    \item \textbf{data}: This directory holds the CSV files of the landslide dataset that are used in the case study. These files provide the data needed to train the LiteTransNet model.
    
    \item \textbf{models}: The \texttt{models} directory stores the saved PyTorch models of the trained Transformer networks.
    
    \item \textbf{training.py}: This script manages the training process for the LiteTransNet model. It includes code for handling the training loop and optimization steps, evaluating the test set, and saving checkpoints of the model.
    
    \item \textbf{tst}: This directory contains several key components of the transformer architecture used in LiteTransNet:
    \begin{itemize}
        \item \texttt{encoder.py}: Contains the implementation of the encoder part of the transformer model, which processes the input data.
        \item \texttt{decoder.py}: Implements the decoder part, which generates the output from the encoded representations.
        \item \texttt{multiHeadAttention.py}: Provides the multi-head attention mechanism, a key component of transformers that allows the model to focus on different parts of the input sequence.
        \item \texttt{positionwiseFeedForward.py}: Defines position-wise feedforward networks used within the transformer model.
        \item \texttt{transformer.py}: This is the script where the entire transformer model is put together using the encoder, decoder, and other components.
        \item \texttt{utils.py}: A utility script that contains helper functions used across various scripts in the \texttt{tst} directory.
    \end{itemize}
    
    \item \textbf{dataset.py}: This file includes code for handling the dataset class, which preprocesses and provides data to the LiteTransNet model during both training and test stages.
    
    \item \textbf{utils.py}: This script offers general utility functions that assist in preprocessing data.
\end{itemize}


\newpage
The training.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import DataLoader, Subset

from tqdm import tqdm

from collections import OrderedDict

import itertools

from tst import Transformer

from src.dataset import LSDataset

from src.utils import fit, visualise_result

import csv

import matplotlib.pyplot as plt



# Dataset name

name = 'bsh'



# Fixed parameters

d_input = 3

d_output = 1 

h = 1 

N = 2

chunk_mode = None 

NUM_WORKERS = 0

pe = None 

BATCH_SIZE = 12

EPOCHS = 200

dropout = 0.2  

LR = 0.002

opt = 'Adam'



# ===== user set params ====

param_grid = OrderedDict({

    "d_model": [16, 32, 48],

    "q": [1, 3, 5],

    "k": [1, 3, 5],

    "v": [1, 3, 5],

    "attention_size": [6, 9, 12]

})



# Generate all possible combinations of parameter values

param_combinations = list(itertools.product(*param_grid.values()))



for i, params in enumerate(param_combinations):

    print(f"Training model {i+1}/{len(param_combinations)} with params {params}")



    # Set the parameters

    d_model, q, k, v, attention_size  = params



    # Config

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print(f"Using device {device}")



    # Load dataset

    lsDataset = LSDataset(name)



    # Split the dataset into train and test sets

    dataset_test = Subset(lsDataset, range(len(lsDataset) - 24, len(lsDataset)))

    dataset_train = Subset(lsDataset, range(len(lsDataset) - 24))



    dataloader_train = DataLoader(dataset_train,

                                batch_size=BATCH_SIZE,

                                shuffle=True,

                                num_workers=NUM_WORKERS,

                                pin_memory=False

                                )



    dataloader_val = DataLoader(dataset_test,

                                batch_size=BATCH_SIZE,

                                shuffle=True,

                                num_workers=NUM_WORKERS

                                )



    dataloader_test = DataLoader(dataset_test,

                                batch_size=BATCH_SIZE,

                                shuffle=False,

                                num_workers=NUM_WORKERS

                                )



    # Load transformer with Adam optimizer and MSE loss function

    if pe == None:

        net = Transformer(d_input, d_model, d_output, q, v, h, N, attention_size=attention_size,

                        dropout=dropout, chunk_mode=chunk_mode, pe=pe).to(device)

    else:

        pe_period = 12

        net = Transformer(d_input, d_model, d_output, q, v, h, N, attention_size=attention_size,

                        dropout=dropout, chunk_mode=chunk_mode, pe=pe, pe_period=pe_period).to(device)  

            



    # Create the optimizer with the initial learning rate

    optimizer = optim.Adam(net.parameters(), lr=LR)

    loss_function = nn.MSELoss()   



    # Fit model

    with tqdm(total=EPOCHS) as pbar:

        train_loss, test_loss = fit(net, optimizer, loss_function, dataloader_train,

                dataloader_val, epochs=EPOCHS, pbar=pbar, device=device)



    # loss visualisation

    plt.plot(train_loss, label='Training Loss')

    plt.plot(test_loss, label='Validation Loss')

    plt.xlabel('Epoch')

    plt.ylabel('Loss')

    plt.title('Training and Validation Loss')

    plt.legend()

    plt.savefig('loss.png')

    plt.close()



    # Switch to evaluation

    _ = net.eval()



    # Select target values in test split

    y_true = lsDataset._y[dataloader_test.dataset.indices]

    train_y = lsDataset._y[dataloader_train.dataset.indices]



    # Compute predictions (test)

    predictions = torch.empty(len(dataloader_test.dataset), 12, 1)  

    idx_prediction = 0

    with torch.no_grad():

        for x, y in tqdm(dataloader_test, total=len(dataloader_test)):

            netout = net(x.to(device)).cpu()

            predictions[idx_prediction:idx_prediction+x.shape[0]] = netout

            idx_prediction += x.shape[0]



    # Save model

    torch.save(net.state_dict(), 'model.pth')

\end{minted}

\newpage
The dataset.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import numpy as np

from torch.utils.data import Dataset

import torch

from src.utils.utils import normalizer, slicing_window, loading_data



class LSDataset(Dataset):

    def __init__(self,

                 name: str,

                 **kwargs):

        super().__init__(**kwargs)

        self.name = name

        self._load_csv()



    def _load_csv(self):

        # load data

        dataset = loading_data(self.name) ###### loading_data_4v

        data = dataset.values

        n_months = 12



        # normalisation

        normed_data, min_val, max_val = normalizer(data)



        # split into 3d array, the label is the next row

        features, labels = slicing_window(normed_data, n_months)



        # Store feature and label

        self._x = features

        self._y = labels



        # Convert to float32 (output)

        self._x = torch.Tensor(self._x)

        self._y = torch.Tensor(self._y)



        self._maxvalue = max_val

        self._minvalue = min_val



    def __getitem__(self, idx):

        if torch.is_tensor(idx):

            idx = idx.tolist()



        return (self._x[idx], self._y[idx])



    def __len__(self):

        return self._x.shape[0]

    



\end{minted}


\newpage
The utils.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import csv

import torch

import numpy as np

import pandas as pd

from sklearn import metrics

from sklearn.metrics import mean_squared_error, mean_absolute_error

import matplotlib.pyplot as plt



def compute_loss(net: torch.nn.Module,

                 dataloader: torch.utils.data.DataLoader,

                 loss_function: torch.nn.Module,

                 device: torch.device = 'cpu') -> torch.Tensor:

    """Compute the loss of a network on a given dataset.



    Does not compute gradient.



    Parameters

    ----------

    net:

        Network to evaluate.

    dataloader:

        Iterator on the dataset.

    loss_function:

        Loss function to compute.

    device:

        Torch device, or :py:class:`str`.



    Returns

    -------

    Loss as a tensor with no grad.

    """

    running_loss = 0

    with torch.no_grad():

        for x, y in dataloader:

            netout = net(x.to(device)).cpu()

            running_loss += loss_function(y, netout)



    return running_loss / len(dataloader)



def normalizer(data):

    numerator = data - np.min(data, 0)

    denominator = np.max(data, 0) - np.min(data, 0)

    # norm_data = numerator / (denominator + 1e-7)

    norm_data = numerator / denominator

    return norm_data, np.min(data, 0), np.max(data, 0)



def scaler(data):

    from sklearn.preprocessing import MinMaxScaler

    scaler = MinMaxScaler(feature_range=(-1, 1)) 

    data_scaled = scaler.fit_transform(data)

    min_value = scaler.data_min_

    max_value = scaler.data_max_

    return data_scaled, min_value, max_value

    

def rescaler(data, min_value, max_value):

    inv_y = (data - (-1)) * (max_value - min_value) / (1 - (-1)) + min_value

    return inv_y



def renormlizer(data, max_val, min_val):

    data = data * (max_val - min_val)

    data = data + min_val

    return data



def slicing_window(data, n_in):

    list_of_features = []

    list_of_labels = []



    for i in range(len(data)-n_in+1):

        arr_features = data[i:(i+n_in), :-1]

        arr_label = data[i:(i+n_in), -1]

        list_of_features.append(arr_features)

        list_of_labels.append(arr_label.reshape(-1, 1))



    features = np.array(list_of_features)

    labels = np.array(list_of_labels) 

    return features, labels

\end{minted}



\newpage
The tst/encoder.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F



from tst.multiHeadAttention import MultiHeadAttention, MultiHeadAttentionChunk, MultiHeadAttentionWindow

from tst.positionwiseFeedForward import PositionwiseFeedForward





class Encoder(nn.Module):

    """Encoder block from Attention is All You Need.



    Apply Multi Head Attention block followed by a Point-wise Feed Forward block.

    Residual sum and normalization are applied at each step.



    Parameters

    ----------

    d_model:

        Dimension of the input vector.

    q:

        Dimension of all query matrix.

    v:

        Dimension of all value matrix.

    h:

        Number of heads.

    attention_size:

        Number of backward elements to apply attention.

        Deactivated if ``None``. Default is ``None``.

    dropout:

        Dropout probability after each MHA or PFF block.

        Default is ``0.3``.

    chunk_mode:

        Swict between different MultiHeadAttention blocks.

        One of ``'chunk'``, ``'window'`` or ``None``. Default is ``'chunk'``.

    """



    def __init__(self,

                 d_model: int,

                 q: int,

                 v: int,

                 h: int,

                 attention_size: int = None,

                 dropout: float = 0.3,

                 chunk_mode: str = 'chunk'):

        """Initialize the Encoder block"""

        super().__init__()



        chunk_mode_modules = {

            'chunk': MultiHeadAttentionChunk,

            'window': MultiHeadAttentionWindow,

        }



        if chunk_mode in chunk_mode_modules.keys():

            MHA = chunk_mode_modules[chunk_mode]

        elif chunk_mode is None:

            MHA = MultiHeadAttention

        else:

            raise NameError(

                f'chunk_mode "{chunk_mode}" not understood. Must be one of {", ".join(chunk_mode_modules.keys())} or None.')



        self._selfAttention = MHA(d_model, q, v, h, attention_size=attention_size)

        self._feedForward = PositionwiseFeedForward(d_model)



        self._layerNorm1 = nn.LayerNorm(d_model)

        self._layerNorm2 = nn.LayerNorm(d_model)



        self._dopout = nn.Dropout(p=dropout)



    def forward(self, x: torch.Tensor) -> torch.Tensor:

        """Propagate the input through the Encoder block.



        Apply the Multi Head Attention block, add residual and normalize.

        Apply the Point-wise Feed Forward block, add residual and normalize.



        Parameters

        ----------

        x:

            Input tensor with shape (batch_size, K, d_model).



        Returns

        -------

            Output tensor with shape (batch_size, K, d_model).

        """

        # Self attention

        residual = x

        x = self._selfAttention(query=x, key=x, value=x)

        x = self._dopout(x)

        x = self._layerNorm1(x + residual)



        # Feed forward

        residual = x

        x = self._feedForward(x)

        x = self._dopout(x)

        x = self._layerNorm2(x + residual)



        return x



    @property

    def attention_map(self) -> torch.Tensor:

        """Attention map after a forward propagation,

        variable `score` in the original paper.

        """

        return self._selfAttention.attention_map



\end{minted}



\newpage
The tst/decoder.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F



from tst.multiHeadAttention import MultiHeadAttention, MultiHeadAttentionChunk, MultiHeadAttentionWindow

from tst.positionwiseFeedForward import PositionwiseFeedForward



class Decoder(nn.Module):

    """Decoder block from Attention is All You Need.



    Apply two Multi Head Attention block followed by a Point-wise Feed Forward block.

    Residual sum and normalization are applied at each step.



    Parameters

    ----------

    d_model: 

        Dimension of the input vector.

    q:

        Dimension of all query matrix.

    v:

        Dimension of all value matrix.

    h:

        Number of heads.

    attention_size:

        Number of backward elements to apply attention.

        Deactivated if ``None``. Default is ``None``.

    dropout:

        Dropout probability after each MHA or PFF block.

        Default is ``0.3``.

    chunk_mode:

        Swict between different MultiHeadAttention blocks.

        One of ``'chunk'``, ``'window'`` or ``None``. Default is ``'chunk'``.

    """



    def __init__(self,

                 d_model: int,

                 q: int,

                 v: int,

                 h: int,

                 attention_size: int = None,

                 dropout: float = 0.3,

                 chunk_mode: str = 'chunk'):

        """Initialize the Decoder block"""

        super().__init__()



        chunk_mode_modules = {

            'chunk': MultiHeadAttentionChunk,

            'window': MultiHeadAttentionWindow,

        }



        if chunk_mode in chunk_mode_modules.keys():

            MHA = chunk_mode_modules[chunk_mode]

        elif chunk_mode is None:

            MHA = MultiHeadAttention

        else:

            raise NameError(

                f'chunk_mode "{chunk_mode}" not understood. Must be one of {", ".join(chunk_mode_modules.keys())} or None.')



        self._selfAttention = MHA(d_model, q, v, h, attention_size=attention_size)

        self._encoderDecoderAttention = MHA(d_model, q, v, h, attention_size=attention_size)

        self._feedForward = PositionwiseFeedForward(d_model)



        self._layerNorm1 = nn.LayerNorm(d_model)

        self._layerNorm2 = nn.LayerNorm(d_model)

        self._layerNorm3 = nn.LayerNorm(d_model)



        self._dopout = nn.Dropout(p=dropout)



    def forward(self, x: torch.Tensor, memory: torch.Tensor) -> torch.Tensor:

        """Propagate the input through the Decoder block.



        Apply the self attention block, add residual and normalize.

        Apply the encoder-decoder attention block, add residual and normalize.

        Apply the feed forward network, add residual and normalize.



        Parameters

        ----------

        x:

            Input tensor with shape (batch_size, K, d_model).

        memory:

            Memory tensor with shape (batch_size, K, d_model)

            from encoder output.



        Returns

        -------

        x:

            Output tensor with shape (batch_size, K, d_model).

        """

        # Self attention

        residual = x

        x = self._selfAttention(query=x, key=x, value=x, mask="subsequent")

        x = self._dopout(x)

        x = self._layerNorm1(x + residual)



        # Encoder-decoder attention

        residual = x

        x = self._encoderDecoderAttention(query=x, key=memory, value=memory)

        x = self._dopout(x)

        x = self._layerNorm2(x + residual)



        # Feed forward

        residual = x

        x = self._feedForward(x)

        x = self._dopout(x)

        x = self._layerNorm3(x + residual)



        return x



\end{minted}


\newpage
The tst/multiHeadAttention.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F



from tst.utils import generate_local_map_mask



class MultiHeadAttention(nn.Module):

    """Multi Head Attention block from Attention is All You Need.



    Given 3 inputs of shape (batch_size, K, d_model), that will be used

    to compute query, keys and values, we output a self attention

    tensor of shape (batch_size, K, d_model).



    Parameters

    ----------

    d_model:

        Dimension of the input vector.

    q:

        Dimension of all query matrix.

    v:

        Dimension of all value matrix.

    h:

        Number of heads.

    attention_size:

        Number of backward elements to apply attention.

        Deactivated if ``None``. Default is ``None``.

    """



    def __init__(self,

                 d_model: int,

                 q: int,

                 v: int,

                 h: int,

                 attention_size: int = None):

        """Initialize the Multi Head Block."""

        super().__init__()



        self._h = h

        self._attention_size = attention_size



        # Query, keys and value matrices

        self._W_q = nn.Linear(d_model, q*self._h)

        self._W_k = nn.Linear(d_model, q*self._h)

        self._W_v = nn.Linear(d_model, v*self._h)



        # Output linear function

        self._W_o = nn.Linear(self._h*v, d_model)



        # Score placeholder

        self._scores = None



    def forward(self,

                query: torch.Tensor,

                key: torch.Tensor,

                value: torch.Tensor,

                mask: Optional[str] = None) -> torch.Tensor:

        """Propagate forward the input through the MHB.



        We compute for each head the queries, keys and values matrices,

        followed by the Scaled Dot-Product. The result is concatenated 

        and returned with shape (batch_size, K, d_model).



        Parameters

        ----------

        query:

            Input tensor with shape (batch_size, K, d_model) used to compute queries.

        key:

            Input tensor with shape (batch_size, K, d_model) used to compute keys.

        value:

            Input tensor with shape (batch_size, K, d_model) used to compute values.

        mask:

            Mask to apply on scores before computing attention.

            One of ``'subsequent'``, None. Default is None.



        Returns

        -------

            Self attention tensor with shape (batch_size, K, d_model).

        """

        K = query.shape[1]



        # Compute Q, K and V, concatenate heads on batch dimension

        queries = torch.cat(self._W_q(query).chunk(self._h, dim=-1), dim=0)

        keys = torch.cat(self._W_k(key).chunk(self._h, dim=-1), dim=0)

        values = torch.cat(self._W_v(value).chunk(self._h, dim=-1), dim=0)



        # Scaled Dot Product

        self._scores = torch.bmm(queries, keys.transpose(1, 2)) / np.sqrt(K)



        # Compute local map mask

        if self._attention_size is not None:

            attention_mask = generate_local_map_mask(K, self._attention_size, mask_future=False, device=self._scores.device)

            self._scores = self._scores.masked_fill(attention_mask, float('-inf'))



        # Compute future mask

        if mask == "subsequent":

            future_mask = torch.triu(torch.ones((K, K)), diagonal=1).bool()

            future_mask = future_mask.to(self._scores.device)

            self._scores = self._scores.masked_fill(future_mask, float('-inf'))



        # Apply sotfmax

        self._scores = F.softmax(self._scores, dim=-1)



        attention = torch.bmm(self._scores, values)



        # Concatenat the heads

        attention_heads = torch.cat(attention.chunk(self._h, dim=0), dim=-1)



        # Apply linear transformation W^O

        self_attention = self._W_o(attention_heads)



        return self_attention



    @property

    def attention_map(self) -> torch.Tensor:

        """Attention map after a forward propagation,

        variable `score` in the original paper.

        """

        if self._scores is None:

            raise RuntimeError(

                "Evaluate the model once to generate attention map")

        return self._scores





class MultiHeadAttentionChunk(MultiHeadAttention):

    """Multi Head Attention block with chunk.



    Given 3 inputs of shape (batch_size, K, d_model), that will be used

    to compute query, keys and values, we output a self attention

    tensor of shape (batch_size, K, d_model).

    Queries, keys and values are divided in chunks of constant size.



    Parameters

    ----------

    d_model:

        Dimension of the input vector.

    q:

        Dimension of all query matrix.

    v:

        Dimension of all value matrix.

    h:

        Number of heads.

    attention_size:

        Number of backward elements to apply attention.

        Deactivated if ``None``. Default is ``None``.

    chunk_size:

        Size of chunks to apply attention on. Last one may be smaller (see :class:`torch.Tensor.chunk`).

        Default is 168.

    """



    def __init__(self,

                 d_model: int,

                 q: int,

                 v: int,

                 h: int,

                 attention_size: int = None,

                 chunk_size: Optional[int] = 168,

                 **kwargs):

        """Initialize the Multi Head Block."""

        super().__init__(d_model, q, v, h, attention_size, **kwargs)



        self._chunk_size = chunk_size



        # Score mask for decoder

        self._future_mask = nn.Parameter(torch.triu(torch.ones((self._chunk_size, self._chunk_size)), diagonal=1).bool(),

                                         requires_grad=False)



        if self._attention_size is not None:

            self._attention_mask = nn.Parameter(generate_local_map_mask(self._chunk_size, self._attention_size),

                                                requires_grad=False)



    def forward(self,

                query: torch.Tensor,

                key: torch.Tensor,

                value: torch.Tensor,

                mask: Optional[str] = None) -> torch.Tensor:

        """Propagate forward the input through the MHB.



        We compute for each head the queries, keys and values matrices,

        followed by the Scaled Dot-Product. The result is concatenated 

        and returned with shape (batch_size, K, d_model).



        Parameters

        ----------

        query:

            Input tensor with shape (batch_size, K, d_model) used to compute queries.

        key:

            Input tensor with shape (batch_size, K, d_model) used to compute keys.

        value:

            Input tensor with shape (batch_size, K, d_model) used to compute values.

        mask:

            Mask to apply on scores before computing attention.

            One of ``'subsequent'``, None. Default is None.



        Returns

        -------

            Self attention tensor with shape (batch_size, K, d_model).

        """

        K = query.shape[1]

        n_chunk = K // self._chunk_size



        # Compute Q, K and V, concatenate heads on batch dimension

        queries = torch.cat(torch.cat(self._W_q(query).chunk(self._h, dim=-1), dim=0).chunk(n_chunk, dim=1), dim=0)

        keys = torch.cat(torch.cat(self._W_k(key).chunk(self._h, dim=-1), dim=0).chunk(n_chunk, dim=1), dim=0)

        values = torch.cat(torch.cat(self._W_v(value).chunk(self._h, dim=-1), dim=0).chunk(n_chunk, dim=1), dim=0)



        # Scaled Dot Product

        self._scores = torch.bmm(queries, keys.transpose(1, 2)) / np.sqrt(self._chunk_size)



        # Compute local map mask

        if self._attention_size is not None:

            self._scores = self._scores.masked_fill(self._attention_mask, float('-inf'))



        # Compute future mask

        if mask == "subsequent":

            self._scores = self._scores.masked_fill(self._future_mask, float('-inf'))



        # Apply softmax

        self._scores = F.softmax(self._scores, dim=-1)



        attention = torch.bmm(self._scores, values)



        # Concatenat the heads

        attention_heads = torch.cat(torch.cat(attention.chunk(

            n_chunk, dim=0), dim=1).chunk(self._h, dim=0), dim=-1)



        # Apply linear transformation W^O

        self_attention = self._W_o(attention_heads)



        return self_attention





class MultiHeadAttentionWindow(MultiHeadAttention):

    """Multi Head Attention block with moving window.



    Given 3 inputs of shape (batch_size, K, d_model), that will be used

    to compute query, keys and values, we output a self attention

    tensor of shape (batch_size, K, d_model).

    Queries, keys and values are divided in chunks using a moving window.



    Parameters

    ----------

    d_model:

        Dimension of the input vector.

    q:

        Dimension of all query matrix.

    v:

        Dimension of all value matrix.

    h:

        Number of heads.

    attention_size:

        Number of backward elements to apply attention.

        Deactivated if ``None``. Default is ``None``.

    window_size:

        Size of the window used to extract chunks.

        Default is 168

    padding:

        Padding around each window. Padding will be applied to input sequence.

        Default is 168 // 4 = 42.

    """



    def __init__(self,

                 d_model: int,

                 q: int,

                 v: int,

                 h: int,

                 attention_size: int = None,

                 window_size: Optional[int] = 168,

                 padding: Optional[int] = 168 // 4,

                 **kwargs):

        """Initialize the Multi Head Block."""

        super().__init__(d_model, q, v, h, attention_size, **kwargs)



        self._window_size = window_size

        self._padding = padding

        self._q = q

        self._v = v



        # Step size for the moving window

        self._step = self._window_size - 2 * self._padding



        # Score mask for decoder

        self._future_mask = nn.Parameter(torch.triu(torch.ones((self._window_size, self._window_size)), diagonal=1).bool(),

                                         requires_grad=False)



        if self._attention_size is not None:

            self._attention_mask = nn.Parameter(generate_local_map_mask(self._window_size, self._attention_size),

                                                requires_grad=False)



    def forward(self,

                query: torch.Tensor,

                key: torch.Tensor,

                value: torch.Tensor,

                mask: Optional[str] = None) -> torch.Tensor:

        """Propagate forward the input through the MHB.



        We compute for each head the queries, keys and values matrices,

        followed by the Scaled Dot-Product. The result is concatenated 

        and returned with shape (batch_size, K, d_model).



        Parameters

        ----------

        query:

            Input tensor with shape (batch_size, K, d_model) used to compute queries.

        key:

            Input tensor with shape (batch_size, K, d_model) used to compute keys.

        value:

            Input tensor with shape (batch_size, K, d_model) used to compute values.

        mask:

            Mask to apply on scores before computing attention.

            One of ``'subsequent'``, None. Default is None.



        Returns

        -------

            Self attention tensor with shape (batch_size, K, d_model).

        """

        batch_size = query.shape[0]



        # Apply padding to input sequence

        query = F.pad(query.transpose(1, 2), (self._padding, self._padding), 'replicate').transpose(1, 2)

        key = F.pad(key.transpose(1, 2), (self._padding, self._padding), 'replicate').transpose(1, 2)

        value = F.pad(value.transpose(1, 2), (self._padding, self._padding), 'replicate').transpose(1, 2)



        # Compute Q, K and V, concatenate heads on batch dimension

        queries = torch.cat(self._W_q(query).chunk(self._h, dim=-1), dim=0)

        keys = torch.cat(self._W_k(key).chunk(self._h, dim=-1), dim=0)

        values = torch.cat(self._W_v(value).chunk(self._h, dim=-1), dim=0)



        # Divide Q, K and V using a moving window

        queries = queries.unfold(dimension=1, size=self._window_size, step=self._step).reshape((-1, self._q, self._window_size)).transpose(1, 2)

        keys = keys.unfold(dimension=1, size=self._window_size, step=self._step).reshape((-1, self._q, self._window_size)).transpose(1, 2)

        values = values.unfold(dimension=1, size=self._window_size, step=self._step).reshape((-1, self._v, self._window_size)).transpose(1, 2)



        # Scaled Dot Product

        self._scores = torch.bmm(queries, keys.transpose(1, 2)) / np.sqrt(self._window_size)



        # Compute local map mask

        if self._attention_size is not None:

            self._scores = self._scores.masked_fill(self._attention_mask, float('-inf'))



        # Compute future mask

        if mask == "subsequent":

            self._scores = self._scores.masked_fill(self._future_mask, float('-inf'))



        # Apply softmax

        self._scores = F.softmax(self._scores, dim=-1)



        attention = torch.bmm(self._scores, values)



        # Fold chunks back

        attention = attention.reshape((batch_size*self._h, -1, self._window_size, self._v))

        attention = attention[:, :, self._padding:-self._padding, :]

        attention = attention.reshape((batch_size*self._h, -1, self._v))



        # Concatenat the heads

        attention_heads = torch.cat(attention.chunk(self._h, dim=0), dim=-1)



        # Apply linear transformation W^O

        self_attention = self._W_o(attention_heads)



        return self_attention



\end{minted}


\newpage
The tst/positionwiseFeedForward.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import torch

import torch.nn as nn

import torch.nn.functional as F



class PositionwiseFeedForward(nn.Module):

    """Position-wise Feed Forward Network block from Attention is All You Need.



    Apply two linear transformations to each input, separately but indetically. We

    implement them as 1D convolutions. Input and output have a shape (batch_size, d_model).



    Parameters

    ----------

    d_model:

        Dimension of input tensor.

    d_ff:

        Dimension of hidden layer, default is 2048.

    """



    def __init__(self,

                 d_model: int,

                 d_ff: Optional[int] = 2048):

        """Initialize the PFF block."""

        super().__init__()



        self._linear1 = nn.Linear(d_model, d_ff)

        self._linear2 = nn.Linear(d_ff, d_model)



    def forward(self, x: torch.Tensor) -> torch.Tensor:

        """Propagate forward the input through the PFF block.



        Apply the first linear transformation, then a relu actvation,

        and the second linear transformation.



        Parameters

        ----------

        x:

            Input tensor with shape (batch_size, K, d_model).



        Returns

        -------

            Output tensor with shape (batch_size, K, d_model).

        """

        return self._linear2(F.relu(self._linear1(x)))



\end{minted}



\newpage
The tst/transformer.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

import torch

import torch.nn as nn



from tst.encoder import Encoder

from tst.decoder import Decoder

from tst.utils import generate_original_PE, generate_regular_PE



class Transformer(nn.Module):

    """Transformer model from Attention is All You Need.



    A classic transformer model adapted for sequential data.

    Embedding has been replaced with a fully connected layer,

    the last layer softmax is now a sigmoid.



    Attributes

    ----------

    layers_encoding: :py:class:`list` of :class:`Encoder.Encoder`

        stack of Encoder layers.

    layers_decoding: :py:class:`list` of :class:`Decoder.Decoder`

        stack of Decoder layers.



    Parameters

    ----------

    d_input:

        Model input dimension.

    d_model:

        Dimension of the input vector.

    d_output:

        Model output dimension.

    q:

        Dimension of queries and keys.

    v:

        Dimension of values.

    h:

        Number of heads.

    N:

        Number of encoder and decoder layers to stack.

    attention_size:

        Number of backward elements to apply attention.

        Deactivated if ``None``. Default is ``None``.

    dropout:

        Dropout probability after each MHA or PFF block.

        Default is ``0.3``.

    chunk_mode:

        Switch between different MultiHeadAttention blocks.

        One of ``'chunk'``, ``'window'`` or ``None``. Default is ``'chunk'``.

    pe:

        Type of positional encoding to add.

        Must be one of ``'original'``, ``'regular'`` or ``None``. Default is ``None``.

    pe_period:

        If using the ``'regular'` pe, then we can define the period. Default is ``24``.

    """



    def __init__(self,

                 d_input: int,

                 d_model: int,

                 d_output: int,

                 q: int,

                 v: int,

                 h: int,

                 N: int,

                 attention_size: int = None,

                 dropout: float = 0.3,

                 chunk_mode: str = 'chunk',

                 pe: str = None,

                 pe_period: int = 12):

        """Create transformer structure from Encoder and Decoder blocks."""

        super().__init__()



        self._d_model = d_model



        self.layers_encoding = nn.ModuleList([Encoder(d_model,

                                                      q,

                                                      v,

                                                      h,

                                                      attention_size=attention_size,

                                                      dropout=dropout,

                                                      chunk_mode=chunk_mode) for _ in range(N)])

        self.layers_decoding = nn.ModuleList([Decoder(d_model,

                                                      q,

                                                      v,

                                                      h,

                                                      attention_size=attention_size,

                                                      dropout=dropout,

                                                      chunk_mode=chunk_mode) for _ in range(N)])



        self._embedding = nn.Linear(d_input, d_model)

        self._linear = nn.Linear(d_model, d_output)



        # positional encoding:

        pe_functions = {

            'original': generate_original_PE,

            'regular': generate_regular_PE,

        }

        if pe in pe_functions.keys():

            self._generate_PE = pe_functions[pe]

            self._pe_period = pe_period

        elif pe is None:

            self._generate_PE = None

        else:

            raise NameError(

                f'PE "{pe}" not understood. Must be one of {", ".join(pe_functions.keys())} or None.')



        self.name = 'transformer'



    def forward(self, x: torch.Tensor) -> torch.Tensor:

        """Propagate input through transformer



        Forward input through an embedding module,

        the encoder then decoder stacks, and an output module.



        Parameters

        ----------

        x:

            :class:`torch.Tensor` of shape (batch_size, K, d_input).



        Returns

        -------

            Output tensor with shape (batch_size, K, d_output).

        """

        K = x.shape[1]



        # Embeddin module

        encoding = self._embedding(x)



        # Add position encoding

        if self._generate_PE is not None:

            pe_params = {'period': self._pe_period} if self._pe_period else {}

            positional_encoding = self._generate_PE(K, self._d_model, **pe_params)

            positional_encoding = positional_encoding.to(encoding.device)

            encoding.add_(positional_encoding)



        # Encoding stack

        for layer in self.layers_encoding:

            encoding = layer(encoding) ### output size of the encoder: d_model



        # Decoding stack

        decoding = encoding



        # Add position encoding

        if self._generate_PE is not None:

            positional_encoding = self._generate_PE(K, self._d_model)

            positional_encoding = positional_encoding.to(decoding.device)

            decoding.add_(positional_encoding)



        for layer in self.layers_decoding:

            decoding = layer(decoding, encoding)



        # Output module

        output = self._linear(decoding)

        output = torch.sigmoid(output)

        return output



\end{minted}



\newpage
The tst/utils.py file:
\begin{minted}[bgcolor=LightGray,breaklines=true,fontsize=\footnotesize]{python}

from typing import Optional, Union

import numpy as np

import torch



def generate_original_PE(length: int, d_model: int) -> torch.Tensor:

    """Generate positional encoding as described in original paper.  :class:`torch.Tensor`



    Parameters

    ----------

    length:

        Time window length, i.e. K.

    d_model:

        Dimension of the model vector.



    Returns

    -------

        Tensor of shape (K, d_model).

    """

    PE = torch.zeros((length, d_model))



    pos = torch.arange(length).unsqueeze(1)

    PE[:, 0::2] = torch.sin(

        pos / torch.pow(1000, torch.arange(0, d_model, 2, dtype=torch.float32)/d_model))

    PE[:, 1::2] = torch.cos(

        pos / torch.pow(1000, torch.arange(1, d_model, 2, dtype=torch.float32)/d_model))



    return PE





def generate_regular_PE(length: int, d_model: int, period: Optional[int] = 24) -> torch.Tensor:

    """Generate positional encoding with a given period.



    Parameters

    ----------

    length:

        Time window length, i.e. K.

    d_model:

        Dimension of the model vector.

    period:

        Size of the pattern to repeat.

        Default is 24.



    Returns

    -------

        Tensor of shape (K, d_model).

    """

    PE = torch.zeros((length, d_model))



    pos = torch.arange(length, dtype=torch.float32).unsqueeze(1)

    PE = torch.sin(pos * 2 * np.pi / period)

    PE = PE.repeat((1, d_model))



    return PE





def generate_local_map_mask(chunk_size: int,

                            attention_size: int,

                            mask_future=False,

                            device: torch.device = 'cpu') -> torch.BoolTensor:

    """Compute attention mask as attention_size wide diagonal.



    Parameters

    ----------

    chunk_size:

        Time dimension size.

    attention_size:

        Number of backward elements to apply attention.

    device:

        torch device. Default is ``'cpu'``.



    Returns

    -------

        Mask as a boolean tensor.

    """

    local_map = np.empty((chunk_size, chunk_size))

    i, j = np.indices(local_map.shape)



    if mask_future:

        local_map[i, j] = (i - j > attention_size) ^ (j - i > 0)

    else:

        local_map[i, j] = np.abs(i - j) > attention_size



    return torch.BoolTensor(local_map).to(device)



\end{minted}

\end{document}