import json import numpy as np from transformers import AutoTokenizer, AutoModel from sklearn.neighbors import NearestNeighbors from tqdm import tqdm import pandas as pd # define the triple retrieval system class class TripleRetrievalSystem: def __init__(self, model_name='bert-base-chinese'): # Initialize BERT tokenizer and model (using pre-trained BERT base model) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name) # Initialize training data storage structure self.train_embeddings = [] self.train_full_data = [] def _generate_embeddings(self, text): inputs = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=4096) # get BERT model's hidden states (last layer) outputs = self.model(**inputs) # Convert output to numpy array and remove batch dimension return outputs.last_hidden_state.detach().numpy()[0] def load_train_data(self, train_path, sheet_name): """Load training data from Excel""" # Read specified sheet from Excel file train_df = pd.read_excel(train_path, sheet_name=sheet_name+' Test') print("Processing training data...") self.train_embeddings = [] self.train_full_data = [] # Store complete (text, question, answer) for _, row in tqdm(train_df.iterrows(), total=len(train_df)): full_text = f"{row['Text']} {row['Question']}" embeddings = self._generate_embeddings(full_text) self.train_embeddings.append(embeddings.mean(axis=0)) # Store complete triplet data self.train_full_data.append({ "text": row['Text'], "question": row['Question'], "answer": row['Answer'] }) self.train_embeddings = np.array(self.train_embeddings) self.nbrs = NearestNeighbors(n_neighbors=3, metric='cosine').fit(self.train_embeddings) def retrieve_similar(self, test_path, output_path, sheet_name): """Process test data and find similar samples""" test_df = pd.read_excel(test_path, sheet_name=sheet_name+' Train') results = [] print("Processing test data...") for _, row in tqdm(test_df.iterrows(), total=len(test_df)): test_text = f"{row['Text']} {row['Question']}" test_embed = self._generate_embeddings(test_text).mean(axis=0) # get the top 3 matching results distances, indices = self.nbrs.kneighbors([test_embed]) matched = [] for i, (dist, idx) in enumerate(zip(distances[0], indices[0])): # get the complete information of the matched sample matched_data = self.train_full_data[idx] matched.append({ "context": matched_data['text'], "question": matched_data['question'], "answer": matched_data['answer'], "score": float(1 - dist) }) results.append({ "test_query": { "text": row['Text'], "question": row['Question'], }, "matched_samples": matched }) with open(output_path, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=2) if __name__ == "__main__": system = TripleRetrievalSystem() system.load_train_data('./data/Task2/data.xlsx','Factoid') system.retrieve_similar( './data/Task2/data.xlsx', './data/Task2/knn_factoid.json', 'Factoid' ) system.load_train_data('./data/Task2/data.xlsx','Yes or No') system.retrieve_similar( './data/Task2/data.xlsx', './data/Task2/knn_yes_no1.json', 'Yes or No' )