import json import numpy as np from transformers import AutoTokenizer, AutoModel from sklearn.neighbors import NearestNeighbors from tqdm import tqdm # 定义三元组检索系统类 class TripleRetrievalSystem: def __init__(self, model_name='bert-base-uncased'): # 初始化BERT分词器和模型(使用预训练的BERT基础模型) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name) # 初始化训练数据存储结构 self.train_embeddings = [] self.train_texts = [] def _generate_embeddings(self, text): """生成上下文敏感的token嵌入""" # 对输入文本进行分词和编码(自动截断到512个token) inputs = self.tokenizer(text, return_tensors='pt', truncation=True, max_length=4096) # 获取BERT模型的隐藏层输出(最后一层) outputs = self.model(**inputs) # 将输出转换为numpy数组并去除批次维度 return outputs.last_hidden_state.detach().numpy()[0] def load_train_data(self, train_path): """预处理并存储训练数据嵌入""" with open(train_path, encoding='utf-8') as f: train_data = json.load(f) print("Processing training data...") # 仅处理500-1000索引的数据(演示用切片操作) train_data = train_data[500:1000] # 使用进度条遍历训练数据 for item in tqdm(train_data): text = item['text'] # 生成文本的token级嵌入 embeddings = self._generate_embeddings(text) # 平均池化操作(将token向量平均为文本向量) self.train_embeddings.append(embeddings.mean(axis=0)) self.train_texts.append(text) # 转换为numpy数组提升计算效率 self.train_embeddings = np.array(self.train_embeddings) # 构建k-NN模型(使用余弦相似度,k=1) self.nbrs = NearestNeighbors(n_neighbors=1, metric='cosine').fit(self.train_embeddings) def retrieve_similar(self, test_path, output_path): """处理测试数据并查找相似训练样本""" with open(test_path, encoding='utf-8') as f: test_data = json.load(f) results = [] print("Processing test data...") # 遍历测试数据并生成结果 for item in tqdm(test_data): test_text = item['text'] # 生成测试文本的嵌入向量 test_embed = self._generate_embeddings(test_text).mean(axis=0) # 查找最近邻(返回距离和索引) distances, indices = self.nbrs.kneighbors([test_embed]) # 收集相关训练文本 relevant = [self.train_texts[i] for i in indices[0]] results.append({ "test_text": test_text, "relevant_train_texts": relevant }) # 保存JSON结果(确保中文字符正常显示) with open(output_path, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=2) # 示例运行 if __name__ == "__main__": system = TripleRetrievalSystem() system.load_train_data('./data/train_triples.json') # 处理测试数据并输出结果 system.retrieve_similar( './data/test_triples.json', './data/output_results.json' )