Spaces:
Runtime error
Runtime error
Update utils.py
Browse files
utils.py
CHANGED
|
@@ -6,18 +6,18 @@ import torch.nn as nn
|
|
| 6 |
|
| 7 |
class BrainTumorModel(nn.Module):
|
| 8 |
def __init__(self):
|
| 9 |
-
super(
|
| 10 |
self.model = nn.Sequential(
|
| 11 |
-
nn.Conv2d(3, 16,
|
| 12 |
nn.ReLU(),
|
| 13 |
nn.MaxPool2d(2),
|
| 14 |
-
nn.Conv2d(16, 32,
|
| 15 |
nn.ReLU(),
|
| 16 |
nn.MaxPool2d(2),
|
| 17 |
nn.Flatten(),
|
| 18 |
nn.Linear(32 * 56 * 56, 128),
|
| 19 |
nn.ReLU(),
|
| 20 |
-
nn.Linear(128, 4)
|
| 21 |
)
|
| 22 |
|
| 23 |
def forward(self, x):
|
|
@@ -25,18 +25,18 @@ class BrainTumorModel(nn.Module):
|
|
| 25 |
|
| 26 |
class GliomaStageModel(nn.Module):
|
| 27 |
def __init__(self):
|
| 28 |
-
super(
|
| 29 |
self.model = nn.Sequential(
|
| 30 |
-
nn.Conv2d(3, 16,
|
| 31 |
nn.ReLU(),
|
| 32 |
nn.MaxPool2d(2),
|
| 33 |
-
nn.Conv2d(16, 32,
|
| 34 |
nn.ReLU(),
|
| 35 |
nn.MaxPool2d(2),
|
| 36 |
nn.Flatten(),
|
| 37 |
nn.Linear(32 * 56 * 56, 128),
|
| 38 |
nn.ReLU(),
|
| 39 |
-
nn.Linear(128, 4)
|
| 40 |
)
|
| 41 |
|
| 42 |
def forward(self, x):
|
|
@@ -44,7 +44,7 @@ class GliomaStageModel(nn.Module):
|
|
| 44 |
|
| 45 |
def get_precautions_from_gemini(tumor_type: str) -> str:
|
| 46 |
db = {
|
| 47 |
-
"meningioma": "Avoid radiation exposure and get regular check
|
| 48 |
"pituitary": "Monitor hormonal levels and follow medication strictly.",
|
| 49 |
"notumor": "Stay healthy and get annual MRI scans if symptoms appear."
|
| 50 |
}
|
|
|
|
| 6 |
|
| 7 |
class BrainTumorModel(nn.Module):
|
| 8 |
def __init__(self):
|
| 9 |
+
super().__init__()
|
| 10 |
self.model = nn.Sequential(
|
| 11 |
+
nn.Conv2d(3, 16, 3, padding=1),
|
| 12 |
nn.ReLU(),
|
| 13 |
nn.MaxPool2d(2),
|
| 14 |
+
nn.Conv2d(16, 32, 3, padding=1),
|
| 15 |
nn.ReLU(),
|
| 16 |
nn.MaxPool2d(2),
|
| 17 |
nn.Flatten(),
|
| 18 |
nn.Linear(32 * 56 * 56, 128),
|
| 19 |
nn.ReLU(),
|
| 20 |
+
nn.Linear(128, 4)
|
| 21 |
)
|
| 22 |
|
| 23 |
def forward(self, x):
|
|
|
|
| 25 |
|
| 26 |
class GliomaStageModel(nn.Module):
|
| 27 |
def __init__(self):
|
| 28 |
+
super().__init__()
|
| 29 |
self.model = nn.Sequential(
|
| 30 |
+
nn.Conv2d(3, 16, 3, padding=1),
|
| 31 |
nn.ReLU(),
|
| 32 |
nn.MaxPool2d(2),
|
| 33 |
+
nn.Conv2d(16, 32, 3, padding=1),
|
| 34 |
nn.ReLU(),
|
| 35 |
nn.MaxPool2d(2),
|
| 36 |
nn.Flatten(),
|
| 37 |
nn.Linear(32 * 56 * 56, 128),
|
| 38 |
nn.ReLU(),
|
| 39 |
+
nn.Linear(128, 4)
|
| 40 |
)
|
| 41 |
|
| 42 |
def forward(self, x):
|
|
|
|
| 44 |
|
| 45 |
def get_precautions_from_gemini(tumor_type: str) -> str:
|
| 46 |
db = {
|
| 47 |
+
"meningioma": "Avoid radiation exposure and get regular check‑ups.",
|
| 48 |
"pituitary": "Monitor hormonal levels and follow medication strictly.",
|
| 49 |
"notumor": "Stay healthy and get annual MRI scans if symptoms appear."
|
| 50 |
}
|