Spaces:
Runtime error
Runtime error
Init
Browse files
app.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from threading import Thread
|
| 2 |
+
from typing import Iterator
|
| 3 |
+
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 8 |
+
|
| 9 |
+
MAX_MAX_NEW_TOKENS = 2048
|
| 10 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
| 11 |
+
MAX_INPUT_TOKEN_LENGTH = 4096
|
| 12 |
+
|
| 13 |
+
DESCRIPTION = """\
|
| 14 |
+
# Llama-2 7B Chat
|
| 15 |
+
|
| 16 |
+
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
|
| 17 |
+
|
| 18 |
+
🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
|
| 19 |
+
|
| 20 |
+
🔨 Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
LICENSE = """
|
| 24 |
+
<p/>
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
As a derivate work of [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta,
|
| 28 |
+
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat/blob/main/USE_POLICY.md).
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
if not torch.cuda.is_available():
|
| 32 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if torch.cuda.is_available():
|
| 36 |
+
model_id = "DAMO-NLP-SG/CLEX-7b-Chat-16K"
|
| 37 |
+
# from CLEX import LlamaForCausalLM
|
| 38 |
+
from transformers import AutoModelForCausalLM
|
| 39 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 41 |
+
tokenizer.use_default_system_prompt = False
|
| 42 |
+
|
| 43 |
+
import PyPDF2
|
| 44 |
+
from io import BytesIO
|
| 45 |
+
|
| 46 |
+
def process_pdf(input_pdf):
|
| 47 |
+
# Read the binary data from the input_pdf
|
| 48 |
+
# pdf_data = BytesIO(input_pdf)
|
| 49 |
+
# if pdf_data.getvalue().strip() == b'':
|
| 50 |
+
# return ""
|
| 51 |
+
# Create a PDF reader object
|
| 52 |
+
reader = PyPDF2.PdfReader(input_pdf.name)
|
| 53 |
+
# Extract the text from each page of the PDF
|
| 54 |
+
text = ""
|
| 55 |
+
for page in reader.pages:
|
| 56 |
+
text += page.extract_text()
|
| 57 |
+
# Close the PDF reader and reset the pointer
|
| 58 |
+
# reader.close()
|
| 59 |
+
# pdf_data.seek(0)
|
| 60 |
+
# Return the extracted text
|
| 61 |
+
return text
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def build_chat():
|
| 66 |
+
from fastchat.model import get_conversation_template
|
| 67 |
+
conv = get_conversation_template("vicuna")
|
| 68 |
+
conv.append_message(conv.roles[0], prompt)
|
| 69 |
+
conv.append_message(conv.roles[1], None)
|
| 70 |
+
prompt = conv.get_prompt()
|
| 71 |
+
return prompt
|
| 72 |
+
|
| 73 |
+
@spaces.GPU
|
| 74 |
+
def generate(
|
| 75 |
+
message: str,
|
| 76 |
+
chat_history: list[tuple[str, str]],
|
| 77 |
+
system_prompt: str,
|
| 78 |
+
max_new_tokens: int = 1024,
|
| 79 |
+
temperature: float = 0.6,
|
| 80 |
+
top_p: float = 0.9,
|
| 81 |
+
top_k: int = 50,
|
| 82 |
+
repetition_penalty: float = 1.2,
|
| 83 |
+
) -> Iterator[str]:
|
| 84 |
+
conversation = []
|
| 85 |
+
if system_prompt:
|
| 86 |
+
conversation.append({"role": "system", "content": system_prompt})
|
| 87 |
+
for user, assistant in chat_history:
|
| 88 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
| 89 |
+
conversation.append({"role": "user", "content": message})
|
| 90 |
+
|
| 91 |
+
chat = tokenizer.apply_chat_template(conversation, tokenize=False)
|
| 92 |
+
inputs = tokenizer(chat, return_tensors="pt", add_special_tokens=False).to("cuda")
|
| 93 |
+
if len(inputs) > MAX_INPUT_TOKEN_LENGTH:
|
| 94 |
+
inputs = inputs[-MAX_INPUT_TOKEN_LENGTH:]
|
| 95 |
+
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
| 96 |
+
|
| 97 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
| 98 |
+
generate_kwargs = dict(
|
| 99 |
+
inputs,
|
| 100 |
+
streamer=streamer,
|
| 101 |
+
max_new_tokens=max_new_tokens,
|
| 102 |
+
do_sample=True,
|
| 103 |
+
top_p=top_p,
|
| 104 |
+
top_k=top_k,
|
| 105 |
+
temperature=temperature,
|
| 106 |
+
num_beams=1,
|
| 107 |
+
repetition_penalty=repetition_penalty,
|
| 108 |
+
)
|
| 109 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
| 110 |
+
t.start()
|
| 111 |
+
|
| 112 |
+
outputs = []
|
| 113 |
+
for text in streamer:
|
| 114 |
+
outputs.append(text)
|
| 115 |
+
yield "".join(outputs)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def generate_with_pdf(
|
| 119 |
+
message: str,
|
| 120 |
+
chat_history: list[tuple[str, str]],
|
| 121 |
+
system_prompt: str,
|
| 122 |
+
input_pdf: BytesIO = None,
|
| 123 |
+
max_new_tokens: int = 1024,
|
| 124 |
+
temperature: float = 0.6,
|
| 125 |
+
top_p: float = 0.9,
|
| 126 |
+
top_k: int = 50,
|
| 127 |
+
repetition_penalty: float = 1.2,
|
| 128 |
+
) -> Iterator[str]:
|
| 129 |
+
if input_pdf is not None:
|
| 130 |
+
pdf_text = process_pdf(input_pdf)
|
| 131 |
+
# print(pdf_text)
|
| 132 |
+
message += f"\nThis is the beginning of a pdf\n{pdf_text}This is the end of a pdf\n"
|
| 133 |
+
yield from generate(
|
| 134 |
+
message,
|
| 135 |
+
chat_history,
|
| 136 |
+
system_prompt,
|
| 137 |
+
max_new_tokens,
|
| 138 |
+
temperature,
|
| 139 |
+
top_p,
|
| 140 |
+
top_k,
|
| 141 |
+
repetition_penalty
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
chat_interface = gr.ChatInterface(
|
| 145 |
+
fn=generate_with_pdf,
|
| 146 |
+
additional_inputs=[
|
| 147 |
+
gr.Textbox(label="System prompt", lines=6),
|
| 148 |
+
gr.File(label="PDF File", accept=".pdf"),
|
| 149 |
+
gr.Slider(
|
| 150 |
+
label="Max new tokens",
|
| 151 |
+
minimum=1,
|
| 152 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
| 153 |
+
step=1,
|
| 154 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
| 155 |
+
),
|
| 156 |
+
gr.Slider(
|
| 157 |
+
label="Temperature",
|
| 158 |
+
minimum=0.1,
|
| 159 |
+
maximum=4.0,
|
| 160 |
+
step=0.1,
|
| 161 |
+
value=0.6,
|
| 162 |
+
),
|
| 163 |
+
gr.Slider(
|
| 164 |
+
label="Top-p (nucleus sampling)",
|
| 165 |
+
minimum=0.05,
|
| 166 |
+
maximum=1.0,
|
| 167 |
+
step=0.05,
|
| 168 |
+
value=0.9,
|
| 169 |
+
),
|
| 170 |
+
gr.Slider(
|
| 171 |
+
label="Top-k",
|
| 172 |
+
minimum=1,
|
| 173 |
+
maximum=1000,
|
| 174 |
+
step=1,
|
| 175 |
+
value=50,
|
| 176 |
+
),
|
| 177 |
+
gr.Slider(
|
| 178 |
+
label="Repetition penalty",
|
| 179 |
+
minimum=1.0,
|
| 180 |
+
maximum=2.0,
|
| 181 |
+
step=0.05,
|
| 182 |
+
value=1.2,
|
| 183 |
+
),
|
| 184 |
+
],
|
| 185 |
+
stop_btn=None,
|
| 186 |
+
examples=[
|
| 187 |
+
["Hello there! How are you doing?"],
|
| 188 |
+
["Can you explain briefly to me what is the Python programming language?"],
|
| 189 |
+
["Explain the plot of Cinderella in a sentence."],
|
| 190 |
+
["How many hours does it take a man to eat a Helicopter?"],
|
| 191 |
+
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
|
| 192 |
+
],
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
with gr.Blocks(css="style.css") as demo:
|
| 198 |
+
gr.Markdown(DESCRIPTION)
|
| 199 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
| 200 |
+
|
| 201 |
+
chat_interface.render()
|
| 202 |
+
gr.Markdown(LICENSE)
|
| 203 |
+
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
demo.queue(max_size=20).launch(share=False)
|
style.css
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h1 {
|
| 2 |
+
text-align: center;
|
| 3 |
+
}
|
| 4 |
+
|
| 5 |
+
#duplicate-button {
|
| 6 |
+
margin: auto;
|
| 7 |
+
color: white;
|
| 8 |
+
background: #1565c0;
|
| 9 |
+
border-radius: 100vh;
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
.contain {
|
| 13 |
+
max-width: 900px;
|
| 14 |
+
margin: auto;
|
| 15 |
+
padding-top: 1.5rem;
|
| 16 |
+
}
|