Spaces:
Running
Running
Upload 3 files
Browse files- README.md +80 -12
- app.py +287 -0
- requirements.txt +8 -0
README.md
CHANGED
|
@@ -1,12 +1,80 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Farm Segmentation
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: green
|
| 5 |
-
colorTo:
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Farm Segmentation API
|
| 3 |
+
emoji: ποΈ
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.28.3
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: AI-powered agricultural image segmentation and land analysis
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# ποΈ Farm Segmentation API
|
| 15 |
+
|
| 16 |
+
Advanced agricultural image segmentation using SegFormer models for precise field and crop analysis.
|
| 17 |
+
|
| 18 |
+
## π― Capabilities
|
| 19 |
+
- **Semantic Segmentation**: Pixel-level classification of agricultural scenes
|
| 20 |
+
- **Agricultural Categories**: Soil, vegetation, water, buildings, equipment
|
| 21 |
+
- **Composition Analysis**: Percentage breakdown of field components
|
| 22 |
+
- **Multi-Resolution**: Support for different accuracy/speed tradeoffs
|
| 23 |
+
|
| 24 |
+
## π€ Models
|
| 25 |
+
- **SegFormer B0**: Fastest processing, basic accuracy
|
| 26 |
+
- **SegFormer B1**: Balanced performance (recommended)
|
| 27 |
+
- **SegFormer B2**: Highest accuracy, slower processing
|
| 28 |
+
|
| 29 |
+
## π‘ API Usage
|
| 30 |
+
|
| 31 |
+
### Python
|
| 32 |
+
```python
|
| 33 |
+
import requests
|
| 34 |
+
import base64
|
| 35 |
+
|
| 36 |
+
def segment_farm_image(image_path, model="segformer_b1"):
|
| 37 |
+
with open(image_path, "rb") as f:
|
| 38 |
+
image_b64 = base64.b64encode(f.read()).decode()
|
| 39 |
+
|
| 40 |
+
response = requests.post(
|
| 41 |
+
"https://YOUR-USERNAME-farm-segmentation.hf.space/api/predict",
|
| 42 |
+
json={"data": [image_b64, model]}
|
| 43 |
+
)
|
| 44 |
+
return response.json()
|
| 45 |
+
|
| 46 |
+
result = segment_farm_image("field_image.jpg")
|
| 47 |
+
print(result)
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## π Response Format
|
| 51 |
+
```json
|
| 52 |
+
{
|
| 53 |
+
"segments_detected": 8,
|
| 54 |
+
"segments": [
|
| 55 |
+
{
|
| 56 |
+
"class": "grass",
|
| 57 |
+
"agricultural_category": "vegetation",
|
| 58 |
+
"pixel_count": 145632,
|
| 59 |
+
"percentage": 35.2,
|
| 60 |
+
"label_id": 9
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"class": "soil",
|
| 64 |
+
"agricultural_category": "soil",
|
| 65 |
+
"pixel_count": 98234,
|
| 66 |
+
"percentage": 23.7,
|
| 67 |
+
"label_id": 12
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"processing_time": 2.1
|
| 71 |
+
}
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
## πΎ Agricultural Categories
|
| 75 |
+
- **soil**: Ground, dirt, earth, mud
|
| 76 |
+
- **vegetation**: Crops, grass, trees, plants
|
| 77 |
+
- **water**: Irrigation channels, ponds, rivers
|
| 78 |
+
- **building**: Barns, greenhouses, structures
|
| 79 |
+
- **equipment**: Tractors, machinery, tools
|
| 80 |
+
- **other**: Roads, sky, uncategorized objects
|
app.py
ADDED
|
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Farm Segmentation API - Gradio Interface
|
| 3 |
+
SegFormer and UNet models for agricultural image segmentation
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import json
|
| 12 |
+
import base64
|
| 13 |
+
import io
|
| 14 |
+
import time
|
| 15 |
+
from typing import List, Dict, Any
|
| 16 |
+
|
| 17 |
+
# Import segmentation models
|
| 18 |
+
try:
|
| 19 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
| 20 |
+
MODELS_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
MODELS_AVAILABLE = False
|
| 23 |
+
|
| 24 |
+
class SegmentationAPI:
|
| 25 |
+
def __init__(self):
|
| 26 |
+
self.models = {}
|
| 27 |
+
self.processors = {}
|
| 28 |
+
self.model_configs = {
|
| 29 |
+
"segformer_b0": "nvidia/segformer-b0-finetuned-ade-512-512",
|
| 30 |
+
"segformer_b1": "nvidia/segformer-b1-finetuned-ade-512-512",
|
| 31 |
+
"segformer_b2": "nvidia/segformer-b2-finetuned-ade-512-512"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
# Segmentation classes relevant to agriculture
|
| 35 |
+
self.ag_classes = {
|
| 36 |
+
"soil": ["dirt", "earth", "ground", "soil", "mud"],
|
| 37 |
+
"vegetation": ["grass", "tree", "plant", "leaf", "crop", "vegetation"],
|
| 38 |
+
"water": ["water", "river", "pond", "irrigation"],
|
| 39 |
+
"sky": ["sky", "cloud"],
|
| 40 |
+
"building": ["building", "structure", "barn", "greenhouse"],
|
| 41 |
+
"road": ["road", "path", "walkway"],
|
| 42 |
+
"equipment": ["machine", "tractor", "equipment"]
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
if MODELS_AVAILABLE:
|
| 46 |
+
self.load_models()
|
| 47 |
+
|
| 48 |
+
def load_models(self):
|
| 49 |
+
"""Load segmentation models"""
|
| 50 |
+
for model_key, model_name in self.model_configs.items():
|
| 51 |
+
try:
|
| 52 |
+
print(f"Loading {model_name}...")
|
| 53 |
+
processor = SegformerImageProcessor.from_pretrained(model_name)
|
| 54 |
+
model = SegformerForSemanticSegmentation.from_pretrained(model_name)
|
| 55 |
+
|
| 56 |
+
self.processors[model_key] = processor
|
| 57 |
+
self.models[model_key] = model
|
| 58 |
+
print(f"β
{model_name} loaded successfully")
|
| 59 |
+
except Exception as e:
|
| 60 |
+
print(f"β Failed to load {model_name}: {e}")
|
| 61 |
+
|
| 62 |
+
def segment_image(self, image: Image.Image, model_key: str = "segformer_b1") -> Dict[str, Any]:
|
| 63 |
+
"""Segment agricultural image"""
|
| 64 |
+
if not MODELS_AVAILABLE or model_key not in self.models:
|
| 65 |
+
return {"error": "Model not available"}
|
| 66 |
+
|
| 67 |
+
start_time = time.time()
|
| 68 |
+
|
| 69 |
+
try:
|
| 70 |
+
# Preprocess image
|
| 71 |
+
processor = self.processors[model_key]
|
| 72 |
+
model = self.models[model_key]
|
| 73 |
+
|
| 74 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 75 |
+
|
| 76 |
+
# Run inference
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
outputs = model(**inputs)
|
| 79 |
+
|
| 80 |
+
# Post-process segmentation
|
| 81 |
+
logits = outputs.logits
|
| 82 |
+
upsampled_logits = torch.nn.functional.interpolate(
|
| 83 |
+
logits,
|
| 84 |
+
size=image.size[::-1],
|
| 85 |
+
mode="bilinear",
|
| 86 |
+
align_corners=False,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
predicted_segmentation = upsampled_logits.argmax(dim=1).squeeze().cpu().numpy()
|
| 90 |
+
|
| 91 |
+
# Analyze segments
|
| 92 |
+
segments_info = self.analyze_segments(predicted_segmentation, model)
|
| 93 |
+
|
| 94 |
+
# Create colored segmentation map
|
| 95 |
+
colored_segmentation = self.create_colored_segmentation(predicted_segmentation, model)
|
| 96 |
+
|
| 97 |
+
processing_time = time.time() - start_time
|
| 98 |
+
|
| 99 |
+
return {
|
| 100 |
+
"segments_detected": len(segments_info),
|
| 101 |
+
"segments": segments_info,
|
| 102 |
+
"segmentation_map": colored_segmentation,
|
| 103 |
+
"processing_time": round(processing_time, 2),
|
| 104 |
+
"model_used": model_key
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
except Exception as e:
|
| 108 |
+
return {"error": str(e)}
|
| 109 |
+
|
| 110 |
+
def analyze_segments(self, segmentation: np.ndarray, model) -> List[Dict[str, Any]]:
|
| 111 |
+
"""Analyze segmentation results"""
|
| 112 |
+
unique_labels = np.unique(segmentation)
|
| 113 |
+
segments_info = []
|
| 114 |
+
|
| 115 |
+
total_pixels = segmentation.size
|
| 116 |
+
|
| 117 |
+
for label in unique_labels:
|
| 118 |
+
mask = segmentation == label
|
| 119 |
+
pixel_count = np.sum(mask)
|
| 120 |
+
percentage = (pixel_count / total_pixels) * 100
|
| 121 |
+
|
| 122 |
+
if percentage > 1.0: # Only include segments > 1%
|
| 123 |
+
class_name = model.config.id2label.get(label, f"class_{label}")
|
| 124 |
+
ag_category = self.classify_agricultural_segment(class_name)
|
| 125 |
+
|
| 126 |
+
segments_info.append({
|
| 127 |
+
"class": class_name,
|
| 128 |
+
"agricultural_category": ag_category,
|
| 129 |
+
"pixel_count": int(pixel_count),
|
| 130 |
+
"percentage": round(percentage, 2),
|
| 131 |
+
"label_id": int(label)
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
return sorted(segments_info, key=lambda x: x["percentage"], reverse=True)
|
| 135 |
+
|
| 136 |
+
def classify_agricultural_segment(self, class_name: str) -> str:
|
| 137 |
+
"""Classify segment into agricultural categories"""
|
| 138 |
+
class_lower = class_name.lower()
|
| 139 |
+
|
| 140 |
+
for ag_category, keywords in self.ag_classes.items():
|
| 141 |
+
if any(keyword in class_lower for keyword in keywords):
|
| 142 |
+
return ag_category
|
| 143 |
+
|
| 144 |
+
return "other"
|
| 145 |
+
|
| 146 |
+
def create_colored_segmentation(self, segmentation: np.ndarray, model) -> np.ndarray:
|
| 147 |
+
"""Create colored segmentation visualization"""
|
| 148 |
+
# Create color palette
|
| 149 |
+
num_classes = len(model.config.id2label)
|
| 150 |
+
colors = self.generate_colors(num_classes)
|
| 151 |
+
|
| 152 |
+
# Create colored image
|
| 153 |
+
h, w = segmentation.shape
|
| 154 |
+
colored = np.zeros((h, w, 3), dtype=np.uint8)
|
| 155 |
+
|
| 156 |
+
for label in np.unique(segmentation):
|
| 157 |
+
mask = segmentation == label
|
| 158 |
+
colored[mask] = colors[label % len(colors)]
|
| 159 |
+
|
| 160 |
+
return colored
|
| 161 |
+
|
| 162 |
+
def generate_colors(self, num_colors: int) -> List[List[int]]:
|
| 163 |
+
"""Generate distinct colors for segmentation classes"""
|
| 164 |
+
import random
|
| 165 |
+
random.seed(42) # For consistent colors
|
| 166 |
+
|
| 167 |
+
colors = []
|
| 168 |
+
for i in range(num_colors):
|
| 169 |
+
colors.append([
|
| 170 |
+
random.randint(50, 255),
|
| 171 |
+
random.randint(50, 255),
|
| 172 |
+
random.randint(50, 255)
|
| 173 |
+
])
|
| 174 |
+
|
| 175 |
+
return colors
|
| 176 |
+
|
| 177 |
+
# Initialize API
|
| 178 |
+
api = SegmentationAPI()
|
| 179 |
+
|
| 180 |
+
def predict_segmentation(image, model_choice):
|
| 181 |
+
"""Gradio prediction function"""
|
| 182 |
+
if image is None:
|
| 183 |
+
return None, None, "Please upload an image"
|
| 184 |
+
|
| 185 |
+
# Convert to PIL Image
|
| 186 |
+
if isinstance(image, np.ndarray):
|
| 187 |
+
image = Image.fromarray(image)
|
| 188 |
+
|
| 189 |
+
# Run segmentation
|
| 190 |
+
results = api.segment_image(image, model_choice)
|
| 191 |
+
|
| 192 |
+
if "error" in results:
|
| 193 |
+
return None, None, f"Error: {results['error']}"
|
| 194 |
+
|
| 195 |
+
# Create visualization
|
| 196 |
+
segmentation_img = Image.fromarray(results["segmentation_map"])
|
| 197 |
+
|
| 198 |
+
# Format results text
|
| 199 |
+
results_text = f"""
|
| 200 |
+
ποΈ **Agricultural Segmentation Analysis**
|
| 201 |
+
|
| 202 |
+
π **Segments Detected**: {results['segments_detected']}
|
| 203 |
+
β±οΈ **Processing Time**: {results['processing_time']}s
|
| 204 |
+
π€ **Model**: {results['model_used']}
|
| 205 |
+
|
| 206 |
+
**πΎ Agricultural Composition**:
|
| 207 |
+
"""
|
| 208 |
+
|
| 209 |
+
for segment in results["segments"][:10]: # Top 10 segments
|
| 210 |
+
results_text += f"\nβ’ **{segment['class']}** ({segment['agricultural_category']}): {segment['percentage']:.1f}%"
|
| 211 |
+
|
| 212 |
+
return image, segmentation_img, results_text
|
| 213 |
+
|
| 214 |
+
# Gradio Interface
|
| 215 |
+
with gr.Blocks(title="ποΈ Farm Segmentation API") as app:
|
| 216 |
+
gr.Markdown("# ποΈ Farm Segmentation API")
|
| 217 |
+
gr.Markdown("AI-powered agricultural image segmentation and land analysis")
|
| 218 |
+
|
| 219 |
+
with gr.Tab("πΎ Field Analysis"):
|
| 220 |
+
with gr.Row():
|
| 221 |
+
with gr.Column():
|
| 222 |
+
image_input = gr.Image(type="pil", label="Upload Farm Image")
|
| 223 |
+
model_choice = gr.Dropdown(
|
| 224 |
+
choices=["segformer_b0", "segformer_b1", "segformer_b2"],
|
| 225 |
+
value="segformer_b1",
|
| 226 |
+
label="Select Model"
|
| 227 |
+
)
|
| 228 |
+
segment_btn = gr.Button("π Analyze Segments", variant="primary")
|
| 229 |
+
|
| 230 |
+
with gr.Column():
|
| 231 |
+
original_image = gr.Image(label="Original Image")
|
| 232 |
+
segmented_image = gr.Image(label="Segmentation Map")
|
| 233 |
+
|
| 234 |
+
results_text = gr.Textbox(label="Segmentation Analysis", lines=15)
|
| 235 |
+
|
| 236 |
+
segment_btn.click(
|
| 237 |
+
predict_segmentation,
|
| 238 |
+
inputs=[image_input, model_choice],
|
| 239 |
+
outputs=[original_image, segmented_image, results_text]
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
with gr.Tab("π‘ API Documentation"):
|
| 243 |
+
gr.Markdown("""
|
| 244 |
+
## π API Endpoint
|
| 245 |
+
|
| 246 |
+
**POST** `/api/predict`
|
| 247 |
+
|
| 248 |
+
### Request Format
|
| 249 |
+
```json
|
| 250 |
+
{
|
| 251 |
+
"data": ["<base64_image>", "<model_choice>"]
|
| 252 |
+
}
|
| 253 |
+
```
|
| 254 |
+
|
| 255 |
+
### Model Options
|
| 256 |
+
- **segformer_b0**: Fastest, basic segmentation
|
| 257 |
+
- **segformer_b1**: Balanced speed and accuracy (recommended)
|
| 258 |
+
- **segformer_b2**: Higher accuracy, slower processing
|
| 259 |
+
|
| 260 |
+
### Response Format
|
| 261 |
+
```json
|
| 262 |
+
{
|
| 263 |
+
"segments_detected": 8,
|
| 264 |
+
"segments": [
|
| 265 |
+
{
|
| 266 |
+
"class": "grass",
|
| 267 |
+
"agricultural_category": "vegetation",
|
| 268 |
+
"pixel_count": 145632,
|
| 269 |
+
"percentage": 35.2,
|
| 270 |
+
"label_id": 9
|
| 271 |
+
}
|
| 272 |
+
],
|
| 273 |
+
"processing_time": 2.1
|
| 274 |
+
}
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
### Agricultural Categories
|
| 278 |
+
- **soil**: Ground, dirt, earth
|
| 279 |
+
- **vegetation**: Crops, grass, trees
|
| 280 |
+
- **water**: Irrigation, ponds, rivers
|
| 281 |
+
- **building**: Barns, greenhouses, structures
|
| 282 |
+
- **equipment**: Tractors, machinery
|
| 283 |
+
- **other**: Uncategorized segments
|
| 284 |
+
""")
|
| 285 |
+
|
| 286 |
+
if __name__ == "__main__":
|
| 287 |
+
app.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
torchvision>=0.15.0
|
| 3 |
+
transformers>=4.30.0
|
| 4 |
+
gradio>=4.28.3
|
| 5 |
+
Pillow>=9.0.0
|
| 6 |
+
opencv-python>=4.8.0
|
| 7 |
+
numpy>=1.21.0
|
| 8 |
+
huggingface-hub>=0.15.0
|