Spaces:
Sleeping
Sleeping
Upload filtravimas.py
Browse files- filtravimas.py +87 -0
filtravimas.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torchaudio.transforms as T
|
| 6 |
+
import noisereduce as nr
|
| 7 |
+
import numpy as np
|
| 8 |
+
from asteroid.models import DCCRNet
|
| 9 |
+
|
| 10 |
+
TEMP_DIR = "temp_filtered"
|
| 11 |
+
OUTPUT_PATH = os.path.join(TEMP_DIR, "ivestis.wav")
|
| 12 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
| 13 |
+
|
| 14 |
+
class WaveUNet(nn.Module):
|
| 15 |
+
def __init__(self):
|
| 16 |
+
super(WaveUNet, self).__init__()
|
| 17 |
+
self.encoder = nn.Sequential(
|
| 18 |
+
nn.Conv1d(1, 16, kernel_size=3, stride=1, padding=1),
|
| 19 |
+
nn.ReLU(),
|
| 20 |
+
nn.Conv1d(16, 32, kernel_size=3, stride=1, padding=1),
|
| 21 |
+
nn.ReLU(),
|
| 22 |
+
nn.Conv1d(32, 64, kernel_size=3, stride=1, padding=1),
|
| 23 |
+
nn.ReLU(),
|
| 24 |
+
)
|
| 25 |
+
self.decoder = nn.Sequential(
|
| 26 |
+
nn.ConvTranspose1d(64, 32, kernel_size=3, stride=1, padding=1),
|
| 27 |
+
nn.ReLU(),
|
| 28 |
+
nn.ConvTranspose1d(32, 16, kernel_size=3, stride=1, padding=1),
|
| 29 |
+
nn.ReLU(),
|
| 30 |
+
nn.ConvTranspose1d(16, 1, kernel_size=3, stride=1, padding=1)
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
x = self.encoder(x)
|
| 35 |
+
x = self.decoder(x)
|
| 36 |
+
return x
|
| 37 |
+
|
| 38 |
+
def filtruoti_su_waveunet(input_path, output_path):
|
| 39 |
+
print("🔧 Wave-U-Net filtravimas...")
|
| 40 |
+
model = WaveUNet()
|
| 41 |
+
model.eval()
|
| 42 |
+
mixture, sr = torchaudio.load(input_path)
|
| 43 |
+
if sr != 16000:
|
| 44 |
+
print("🔁 Resample į 16kHz...")
|
| 45 |
+
resampler = T.Resample(orig_freq=sr, new_freq=16000).to(mixture.device)
|
| 46 |
+
mixture = resampler(mixture)
|
| 47 |
+
if mixture.dim() == 2:
|
| 48 |
+
mixture = mixture.unsqueeze(0)
|
| 49 |
+
with torch.no_grad():
|
| 50 |
+
output = model(mixture)
|
| 51 |
+
output = output.squeeze(0)
|
| 52 |
+
torchaudio.save(output_path, output, 16000)
|
| 53 |
+
print(f"✅ Wave-U-Net išsaugota: {output_path}")
|
| 54 |
+
|
| 55 |
+
def filtruoti_su_denoiser(input_path, output_path):
|
| 56 |
+
print("🔧 Denoiser (DCCRNet)...")
|
| 57 |
+
model = DCCRNet.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k")
|
| 58 |
+
mixture, sr = torchaudio.load(input_path)
|
| 59 |
+
if sr != 16000:
|
| 60 |
+
print("🔁 Resample į 16kHz...")
|
| 61 |
+
resampler = T.Resample(orig_freq=sr, new_freq=16000).to(mixture.device)
|
| 62 |
+
mixture = resampler(mixture)
|
| 63 |
+
with torch.no_grad():
|
| 64 |
+
est_source = model.separate(mixture)
|
| 65 |
+
torchaudio.save(output_path, est_source[0], 16000)
|
| 66 |
+
print(f"✅ Denoiser išsaugota: {output_path}")
|
| 67 |
+
|
| 68 |
+
def filtruoti_su_noisereduce(input_path, output_path):
|
| 69 |
+
print("🔧 Noisereduce filtravimas...")
|
| 70 |
+
waveform, sr = torchaudio.load(input_path)
|
| 71 |
+
audio = waveform.detach().cpu().numpy()[0]
|
| 72 |
+
reduced = nr.reduce_noise(y=audio, sr=sr)
|
| 73 |
+
reduced_tensor = torch.from_numpy(reduced).unsqueeze(0)
|
| 74 |
+
torchaudio.save(output_path, reduced_tensor, sr)
|
| 75 |
+
print(f"✅ Noisereduce išsaugota: {output_path}")
|
| 76 |
+
|
| 77 |
+
def filtruoti_audio(input_path: str, metodas: str) -> str:
|
| 78 |
+
if metodas == "Denoiser":
|
| 79 |
+
filtruoti_su_denoiser(input_path, OUTPUT_PATH)
|
| 80 |
+
elif metodas == "Wave-U-Net":
|
| 81 |
+
filtruoti_su_waveunet(input_path, OUTPUT_PATH)
|
| 82 |
+
elif metodas == "Noisereduce":
|
| 83 |
+
filtruoti_su_noisereduce(input_path, OUTPUT_PATH)
|
| 84 |
+
else:
|
| 85 |
+
raise ValueError("Nepalaikomas filtravimo metodas")
|
| 86 |
+
|
| 87 |
+
return OUTPUT_PATH
|