Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,40 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
],
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import MarianMTModel, MarianTokenizer
|
| 3 |
+
|
| 4 |
+
# Load models for both directions
|
| 5 |
+
en_to_ur_model_name = "Helsinki-NLP/opus-mt-en-ur"
|
| 6 |
+
ur_to_en_model_name = "Helsinki-NLP/opus-mt-ur-en"
|
| 7 |
+
|
| 8 |
+
en_to_ur_tokenizer = MarianTokenizer.from_pretrained(en_to_ur_model_name)
|
| 9 |
+
en_to_ur_model = MarianMTModel.from_pretrained(en_to_ur_model_name)
|
| 10 |
+
|
| 11 |
+
ur_to_en_tokenizer = MarianTokenizer.from_pretrained(ur_to_en_model_name)
|
| 12 |
+
ur_to_en_model = MarianMTModel.from_pretrained(ur_to_en_model_name)
|
| 13 |
+
|
| 14 |
+
# Translation function
|
| 15 |
+
def translate(text, direction):
|
| 16 |
+
if direction == "English to Urdu":
|
| 17 |
+
tokenizer = en_to_ur_tokenizer
|
| 18 |
+
model = en_to_ur_model
|
| 19 |
+
else:
|
| 20 |
+
tokenizer = ur_to_en_tokenizer
|
| 21 |
+
model = ur_to_en_model
|
| 22 |
+
|
| 23 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 24 |
+
translated = model.generate(**inputs)
|
| 25 |
+
output = tokenizer.decode(translated[0], skip_special_tokens=True)
|
| 26 |
+
return output
|
| 27 |
+
|
| 28 |
+
# Gradio interface
|
| 29 |
+
demo = gr.Interface(
|
| 30 |
+
fn=translate,
|
| 31 |
+
inputs=[
|
| 32 |
+
gr.Textbox(label="Enter Text"),
|
| 33 |
+
gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
],
|
| 35 |
+
outputs=gr.Textbox(label="Translated Text"),
|
| 36 |
+
title="English ↔ Urdu Translator",
|
| 37 |
+
description="Translate between English and Urdu using Hugging Face Transformers."
|
| 38 |
)
|
| 39 |
|
| 40 |
+
demo.launch()
|
|
|
|
|
|