import gradio as gr from transformers import MarianMTModel, MarianTokenizer # Load models for both directions en_to_ur_model_name = "Helsinki-NLP/opus-mt-en-ur" ur_to_en_model_name = "Helsinki-NLP/opus-mt-ur-en" en_to_ur_tokenizer = MarianTokenizer.from_pretrained(en_to_ur_model_name) en_to_ur_model = MarianMTModel.from_pretrained(en_to_ur_model_name) ur_to_en_tokenizer = MarianTokenizer.from_pretrained(ur_to_en_model_name) ur_to_en_model = MarianMTModel.from_pretrained(ur_to_en_model_name) # Translation function def translate(text, direction): if direction == "English to Urdu": tokenizer = en_to_ur_tokenizer model = en_to_ur_model else: tokenizer = ur_to_en_tokenizer model = ur_to_en_model inputs = tokenizer(text, return_tensors="pt", padding=True) translated = model.generate(**inputs) output = tokenizer.decode(translated[0], skip_special_tokens=True) return output # Gradio interface demo = gr.Interface( fn=translate, inputs=[ gr.Textbox(label="Enter Text"), gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction") ], outputs=gr.Textbox(label="Translated Text"), title="English ↔ Urdu Translator", description="Translate between English and Urdu using Hugging Face Transformers." ) demo.launch()