Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import gradio as gr | |
| from datasets import load_dataset | |
| def generate_random_data(): | |
| # Load the dataset with the `large_random_1k` subset | |
| dataset = load_dataset('poloclub/diffusiondb', 'large_random_1k') | |
| # All data are stored in the `train` split | |
| my_1k_data = dataset['train'] | |
| random_i = np.random.choice(range(my_1k_data.num_rows)) | |
| prompt = my_1k_data['prompt'][random_i] | |
| image = my_1k_data['image'][random_i] | |
| seed = my_1k_data['seed'][random_i] | |
| step = my_1k_data['step'][random_i] | |
| cfg = my_1k_data['cfg'][random_i] | |
| sampler = my_1k_data['sampler'][random_i] | |
| return prompt, image, seed, step, cfg, sampler | |
| def random_data(): | |
| prompt, image, seed, step, cfg, sampler = generate_random_data() | |
| data = { | |
| 'Prompt': prompt, | |
| 'Seed': seed, | |
| 'Step': step, | |
| 'CFG': cfg, | |
| 'Sampler': sampler | |
| } | |
| with open("random_data.txt", "w") as file: | |
| for key, value in data.items(): | |
| file.write(f"{key}: {value}\n") | |
| return prompt, image, seed, step, cfg, sampler | |
| iface = gr.Interface(fn=random_data, inputs=None, outputs=[ | |
| gr.outputs.Textbox(label="Prompt"), | |
| gr.outputs.Image(label="Image", type="pil"), | |
| gr.outputs.Textbox(label="Seed"), | |
| gr.outputs.Textbox(label="Step"), | |
| gr.outputs.Textbox(label="CFG"), | |
| gr.outputs.Textbox(label="Sampler") | |
| ], title="Stable Diffusion DB", description="By Falah.G.S AI Developer") | |
| iface.launch(debug=True) | |