File size: 18,497 Bytes
eb07486
 
 
 
 
 
 
 
 
 
 
 
 
86aee4e
eb07486
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94b0f9d
eb07486
94b0f9d
66633a9
d8fe735
73e47b2
 
 
 
 
 
 
 
eb07486
 
 
 
 
73e47b2
 
 
 
 
eb07486
73e47b2
 
eb07486
73e47b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
 
 
 
 
 
 
 
 
eb07486
 
 
73e47b2
 
 
 
 
 
 
eb07486
 
 
73e47b2
eb07486
 
 
 
 
 
 
5c94a1d
eb07486
73e47b2
 
 
 
eb07486
73e47b2
eb07486
 
73e47b2
86aee4e
73e47b2
 
 
 
 
 
 
 
 
 
 
eb07486
73e47b2
eb07486
73e47b2
eb07486
73e47b2
 
 
eb07486
 
 
 
 
 
73e47b2
 
 
 
 
eb07486
 
73e47b2
eb07486
73e47b2
 
 
eb07486
73e47b2
eb07486
73e47b2
eb07486
 
73e47b2
eb07486
73e47b2
eb07486
73e47b2
eb07486
73e47b2
 
 
eb07486
73e47b2
 
 
 
 
 
eb07486
 
73e47b2
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
eb07486
 
73e47b2
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb07486
 
 
 
73e47b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb07486
73e47b2
 
eb07486
 
73e47b2
 
 
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
 
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
 
 
 
eb07486
 
73e47b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03875f4
eb07486
 
73e47b2
 
 
 
 
 
eb07486
73e47b2
eb07486
73e47b2
 
 
 
 
 
 
 
eb07486
73e47b2
 
 
eb07486
 
 
 
 
 
73e47b2
 
 
 
eb07486
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Liu Yue)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import os
import sys
import argparse
import gradio as gr
import numpy as np
import torch
import torchaudio
import random
import librosa
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append('{}/third_party/Matcha-TTS'.format(ROOT_DIR))

from modelscope import snapshot_download, HubApi
from huggingface_hub import snapshot_download as hf_snapshot_download

hf_snapshot_download('FunAudioLLM/Fun-CosyVoice3-0.5B-2512', local_dir='pretrained_models/Fun-CosyVoice3-0.5B')
snapshot_download('iic/SenseVoiceSmall', local_dir='pretrained_models/SenseVoiceSmall')
hf_snapshot_download('FunAudioLLM/CosyVoice-ttsfrd', local_dir='pretrained_models/CosyVoice-ttsfrd')
os.system(
    "cd pretrained_models/CosyVoice-ttsfrd/ && "
    "pip install ttsfrd_dependency-0.1-py3-none-any.whl && "
    "pip install ttsfrd-0.4.2-cp310-cp310-linux_x86_64.whl && "
    "apt install -y unzip && "
    "rm -rf resource && "
    "unzip resource.zip -d ."
)

from cosyvoice.cli.cosyvoice import AutoModel as CosyVoiceAutoModel
from cosyvoice.utils.file_utils import logging, load_wav
from cosyvoice.utils.common import set_all_random_seed, instruct_list

# -----------------------------
# i18n (En: British spelling)
# -----------------------------
LANG_EN = "En"
LANG_ZH = "Zh"

MODE_ZERO_SHOT = "zero_shot"
MODE_INSTRUCT = "instruct"

UI_TEXT = {
    LANG_EN: {
        "lang_label": "Language",
        "md_links": (
            "### Repository [CosyVoice](https://github.com/FunAudioLLM/CosyVoice)  \n"
            "Pre-trained model [Fun-CosyVoice3-0.5B](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512)  \n"
            "[CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B)  \n"
            "[CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M)  \n"
            "[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct)  \n"
            "[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)"
        ),
        "md_hint": "#### Enter the text to synthesise, choose an inference mode, and follow the steps.",
        "tts_label": "Text to synthesise",
        "tts_default": "Her handwriting is very neat, which suggests she likes things tidy.",
        "mode_label": "Inference mode",
        "mode_zero_shot": "3s fast voice cloning",
        "mode_instruct": "Natural language control",
        "steps_label": "Steps",
        "steps_zero_shot": (
            "1. Choose a prompt audio file, or record prompt audio (≤ 30s). If both are provided, the uploaded file is used.\n"
            "2. Enter the prompt text.\n"
            "3. Click Generate audio."
        ),
        "steps_instruct": (
            "1. Choose a prompt audio file, or record prompt audio (≤ 30s). If both are provided, the uploaded file is used.\n"
            "2. Choose/enter the instruct text.\n"
            "3. Click Generate audio."
        ),
        "stream_label": "Streaming inference",
        "stream_no": "No",
        "dice": "🎲",
        "seed_label": "Random inference seed",
        "upload_label": "Choose prompt audio file (sample rate ≥ 16 kHz)",
        "record_label": "Record prompt audio",
        "prompt_text_label": "Prompt text",
        "prompt_text_ph": "Enter prompt text (auto recognition supported; you can edit the result)...",
        "instruct_label": "Choose instruct text",
        "generate_btn": "Generate audio",
        "output_label": "Synthesised audio",
        "warn_too_long": "Your input text is too long; please keep it within 200 characters.",
        "warn_instruct_empty": "You are using Natural language control; please enter instruct text.",
        "info_instruct_need_prompt": "You are using Natural language control; please provide prompt audio.",
        "warn_prompt_missing": "Prompt audio is empty. Did you forget to provide prompt audio?",
        "warn_prompt_sr_low": "Prompt audio sample rate {} is below {}.",
        "warn_prompt_too_long_10s": "Please keep the prompt audio within 10 seconds to avoid poor inference quality.",
        "warn_prompt_text_missing": "Prompt text is empty. Did you forget to enter prompt text?",
        "info_instruct_ignored": "You are using 3s fast voice cloning; instruct text will be ignored.",
        "warn_invalid_mode": "Invalid mode selection.",
    },
    LANG_ZH: {
        "lang_label": "语言",
        "md_links": (
            "### 代码库 [CosyVoice](https://github.com/FunAudioLLM/CosyVoice)  \n"
            "预训练模型 [Fun-CosyVoice3-0.5B](https://huggingface.co/FunAudioLLM/Fun-CosyVoice3-0.5B-2512)  \n"
            "[CosyVoice2-0.5B](https://www.modelscope.cn/models/iic/CosyVoice2-0.5B)  \n"
            "[CosyVoice-300M](https://www.modelscope.cn/models/iic/CosyVoice-300M)  \n"
            "[CosyVoice-300M-Instruct](https://www.modelscope.cn/models/iic/CosyVoice-300M-Instruct)  \n"
            "[CosyVoice-300M-SFT](https://www.modelscope.cn/models/iic/CosyVoice-300M-SFT)"
        ),
        "md_hint": "#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作",
        "tts_label": "输入合成文本",
        "tts_default": "Her handwriting is [M][AY0][N][UW1][T]并且很整洁,说明她[h][ào]干净。",
        "mode_label": "选择推理模式",
        "mode_zero_shot": "3s极速复刻",
        "mode_instruct": "自然语言控制",
        "steps_label": "操作步骤",
        "steps_zero_shot": (
            "1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n"
            "2. 输入prompt文本\n"
            "3. 点击生成音频按钮"
        ),
        "steps_instruct": (
            "1. 选择prompt音频文件,或录入prompt音频,注意不超过30s,若同时提供,优先选择prompt音频文件\n"
            "2. 输入instruct文本\n"
            "3. 点击生成音频按钮"
        ),
        "stream_label": "是否流式推理",
        "stream_no": "否",
        "dice": "🎲",
        "seed_label": "随机推理种子",
        "upload_label": "选择prompt音频文件,注意采样率不低于16khz",
        "record_label": "录制prompt音频文件",
        "prompt_text_label": "prompt文本",
        "prompt_text_ph": "请输入prompt文本,支持自动识别,您可以自行修正识别结果...",
        "instruct_label": "选择instruct文本",
        "generate_btn": "生成音频",
        "output_label": "合成音频",
        "warn_too_long": "您输入的文字过长,请限制在200字以内",
        "warn_instruct_empty": "您正在使用自然语言控制模式, 请输入instruct文本",
        "info_instruct_need_prompt": "您正在使用自然语言控制模式, 请输入prompt音频",
        "warn_prompt_missing": "prompt音频为空,您是否忘记输入prompt音频?",
        "warn_prompt_sr_low": "prompt音频采样率{}低于{}",
        "warn_prompt_too_long_10s": "请限制输入音频在10s内,避免推理效果过低",
        "warn_prompt_text_missing": "prompt文本为空,您是否忘记输入prompt文本?",
        "info_instruct_ignored": "您正在使用3s极速复刻模式,instruct文本会被忽略!",
        "warn_invalid_mode": "无效的模式选择",
    },
}


def t(lang: str, key: str) -> str:
    lang = lang if lang in UI_TEXT else LANG_ZH
    return UI_TEXT[lang][key]


def mode_choices(lang: str):
    return [
        (t(lang, "mode_zero_shot"), MODE_ZERO_SHOT),
        (t(lang, "mode_instruct"), MODE_INSTRUCT),
    ]


def steps_for(lang: str, mode_value: str) -> str:
    if mode_value == MODE_INSTRUCT:
        return t(lang, "steps_instruct")
    return t(lang, "steps_zero_shot")


# -----------------------------
# Audio post-process
# -----------------------------
max_val = 0.8
top_db = 60
hop_length = 220
win_length = 440


def generate_seed():
    seed = random.randint(1, 100000000)
    return {"__type__": "update", "value": seed}


def postprocess(wav):
    speech = load_wav(wav, target_sr=target_sr, min_sr=16000)
    speech, _ = librosa.effects.trim(
        speech, top_db=top_db, frame_length=win_length, hop_length=hop_length
    )
    if speech.abs().max() > max_val:
        speech = speech / speech.abs().max() * max_val
    speech = torch.concat([speech, torch.zeros(1, int(target_sr * 0.2))], dim=1)
    torchaudio.save(wav, speech, target_sr)
    return wav

@spaces.GPU
def prompt_wav_recognition(prompt_wav):
    res = asr_model.generate(
        input=prompt_wav,
        language="auto",  # "zn", "en", "yue", "ja", "ko", "nospeech"
        use_itn=True,
    )
    text = res[0]["text"].split("|>")[-1]
    return text


@spaces.GPU
def generate_audio(
    tts_text,
    mode_value,
    prompt_text,
    prompt_wav_upload,
    prompt_wav_record,
    instruct_text,
    seed,
    stream,
    ui_lang,
):
    stream = False

    if len(tts_text) > 200:
        gr.Warning(t(ui_lang, "warn_too_long"))
        return (target_sr, default_data)

    sft_dropdown, speed = "", 1.0

    if prompt_wav_upload is not None:
        prompt_wav = prompt_wav_upload
    elif prompt_wav_record is not None:
        prompt_wav = prompt_wav_record
    else:
        prompt_wav = None

    # instruct mode requirements
    if mode_value == MODE_INSTRUCT:
        if instruct_text == "":
            gr.Warning(t(ui_lang, "warn_instruct_empty"))
            return (target_sr, default_data)
        if prompt_wav is None:
            gr.Info(t(ui_lang, "info_instruct_need_prompt"))
            return (target_sr, default_data)

    # zero-shot requirements
    if mode_value == MODE_ZERO_SHOT:
        if prompt_wav is None:
            gr.Warning(t(ui_lang, "warn_prompt_missing"))
            return (target_sr, default_data)

        info = torchaudio.info(prompt_wav)
        if info.sample_rate < prompt_sr:
            gr.Warning(t(ui_lang, "warn_prompt_sr_low").format(info.sample_rate, prompt_sr))
            return (target_sr, default_data)

        if info.num_frames / info.sample_rate > 10:
            gr.Warning(t(ui_lang, "warn_prompt_too_long_10s"))
            return (target_sr, default_data)

        if prompt_text == "":
            gr.Warning(t(ui_lang, "warn_prompt_text_missing"))
            return (target_sr, default_data)

        if instruct_text != "":
            gr.Info(t(ui_lang, "info_instruct_ignored"))

    if mode_value == MODE_ZERO_SHOT:
        logging.info("get zero_shot inference request")
        set_all_random_seed(seed)
        speech_list = []
        for i in cosyvoice.inference_zero_shot(
            tts_text,
            "You are a helpful assistant.<|endofprompt|>" + prompt_text,
            postprocess(prompt_wav),
            stream=stream,
            speed=speed,
        ):
            speech_list.append(i["tts_speech"])
        return (target_sr, torch.concat(speech_list, dim=1).numpy().flatten())

    if mode_value == MODE_INSTRUCT:
        logging.info("get instruct inference request")
        set_all_random_seed(seed)
        speech_list = []
        for i in cosyvoice.inference_instruct2(
            tts_text,
            instruct_text,
            postprocess(prompt_wav),
            stream=stream,
            speed=speed,
        ):
            speech_list.append(i["tts_speech"])
        return (target_sr, torch.concat(speech_list, dim=1).numpy().flatten())

    gr.Warning(t(ui_lang, "warn_invalid_mode"))
    return (target_sr, default_data)


def on_mode_change(mode_value, ui_lang):
    return steps_for(ui_lang, mode_value)


def on_language_change(ui_lang, current_mode_value):
    lang = ui_lang if ui_lang in (LANG_EN, LANG_ZH) else LANG_ZH
    return (
        gr.update(value=UI_TEXT[lang]["md_links"]),  # md_links
        gr.update(value=UI_TEXT[lang]["md_hint"]),  # md_hint
        gr.update(label=t(lang, "lang_label")),  # lang_radio label
        gr.update(choices=mode_choices(lang), label=t(lang, "mode_label")),  # mode radio
        gr.update(value=steps_for(lang, current_mode_value), label=t(lang, "steps_label")),  # steps box
        gr.update(
            choices=[(t(lang, "stream_no"), False)],
            label=t(lang, "stream_label"),
            value=False,
        ),  # stream radio
        gr.update(value=t(lang, "dice")),  # seed button text
        gr.update(label=t(lang, "seed_label")),  # seed label
        gr.update(label=t(lang, "tts_label"), value=t(lang, "tts_default")),  # tts textbox
        gr.update(label=t(lang, "upload_label")),  # upload label
        gr.update(label=t(lang, "record_label")),  # record label
        gr.update(label=t(lang, "prompt_text_label"), placeholder=t(lang, "prompt_text_ph")),  # prompt text
        gr.update(label=t(lang, "instruct_label")),  # instruct dropdown
        gr.update(value=t(lang, "generate_btn")),  # generate button
        gr.update(label=t(lang, "output_label")),  # output label
    )


def main():
    with gr.Blocks() as demo:
        md_links = gr.Markdown(UI_TEXT[LANG_ZH]["md_links"])
        md_hint = gr.Markdown(UI_TEXT[LANG_ZH]["md_hint"])

        lang_radio = gr.Radio(
            choices=[LANG_EN, LANG_ZH],
            value=LANG_ZH,
            label=t(LANG_ZH, "lang_label"),
        )

        tts_text = gr.Textbox(
            label=t(LANG_ZH, "tts_label"),
            lines=1,
            value=t(LANG_ZH, "tts_default"),
        )

        with gr.Row():
            mode_radio = gr.Radio(
                choices=mode_choices(LANG_ZH),
                label=t(LANG_ZH, "mode_label"),
                value=MODE_ZERO_SHOT,
            )
            steps_box = gr.Textbox(
                label=t(LANG_ZH, "steps_label"),
                value=steps_for(LANG_ZH, MODE_ZERO_SHOT),
                lines=4,
                interactive=False,
                scale=0.5,
            )
            stream = gr.Radio(
                choices=[(t(LANG_ZH, "stream_no"), False)],
                label=t(LANG_ZH, "stream_label"),
                value=False,
            )
            with gr.Column(scale=0.25):
                seed_button = gr.Button(value=t(LANG_ZH, "dice"))
                seed = gr.Number(value=0, label=t(LANG_ZH, "seed_label"))

        with gr.Row():
            prompt_wav_upload = gr.Audio(
                sources="upload",
                type="filepath",
                label=t(LANG_ZH, "upload_label"),
            )
            prompt_wav_record = gr.Audio(
                sources="microphone",
                type="filepath",
                label=t(LANG_ZH, "record_label"),
            )

        prompt_text = gr.Textbox(
            label=t(LANG_ZH, "prompt_text_label"),
            lines=1,
            placeholder=t(LANG_ZH, "prompt_text_ph"),
            value="",
        )
        instruct_text = gr.Dropdown(
            choices=instruct_list,
            label=t(LANG_ZH, "instruct_label"),
            value=instruct_list[0],
        )

        generate_button = gr.Button(t(LANG_ZH, "generate_btn"))
        audio_output = gr.Audio(
            label=t(LANG_ZH, "output_label"),
            autoplay=True,
            streaming=False,
        )

        seed_button.click(generate_seed, inputs=[], outputs=seed)

        generate_button.click(
            generate_audio,
            inputs=[
                tts_text,
                mode_radio,
                prompt_text,
                prompt_wav_upload,
                prompt_wav_record,
                instruct_text,
                seed,
                stream,
                lang_radio,  # ui_lang
            ],
            outputs=[audio_output],
        )

        mode_radio.change(
            fn=on_mode_change,
            inputs=[mode_radio, lang_radio],
            outputs=[steps_box],
        )

        prompt_wav_upload.change(
            fn=prompt_wav_recognition,
            inputs=[prompt_wav_upload],
            outputs=[prompt_text],
        )
        prompt_wav_record.change(
            fn=prompt_wav_recognition,
            inputs=[prompt_wav_record],
            outputs=[prompt_text],
        )

        lang_radio.change(
            fn=on_language_change,
            inputs=[lang_radio, mode_radio],
            outputs=[
                md_links,
                md_hint,
                lang_radio,
                mode_radio,
                steps_box,
                stream,
                seed_button,
                seed,
                tts_text,
                prompt_wav_upload,
                prompt_wav_record,
                prompt_text,
                instruct_text,
                generate_button,
                audio_output,
            ],
        )

    demo.queue(default_concurrency_limit=4).launch()


if __name__ == "__main__":
    cosyvoice = CosyVoiceAutoModel(
        model_dir="pretrained_models/Fun-CosyVoice3-0.5B",
        load_trt=False,
        fp16=False,
    )
    sft_spk = cosyvoice.list_available_spks()

    for stream in [False]:
        for i, j in enumerate(
            cosyvoice.inference_zero_shot(
                "收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。",
                "You are a helpful assistant.<|endofprompt|>希望你以后能够做的比我还好呦。",
                "zero_shot_prompt.wav",
                stream=stream,
            )
        ):
            continue

    prompt_sr = 16000
    target_sr = 24000
    default_data = np.zeros(target_sr)

    model_dir = "pretrained_models/SenseVoiceSmall"
    asr_model = AutoModel(
        model=model_dir,
        disable_update=True,
        log_level="DEBUG",
        device="cuda:0",
    )

    main()