aluminumbox's picture
Update cosyvoice/hifigan/f0_predictor.py
fb3e12e verified
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
try:
from torch.nn.utils.parametrizations import weight_norm
except ImportError:
from torch.nn.utils import weight_norm
from cosyvoice.transformer.convolution import CausalConv1d
class ConvRNNF0Predictor(nn.Module):
def __init__(self,
num_class: int = 1,
in_channels: int = 80,
cond_channels: int = 512
):
super().__init__()
self.num_class = num_class
self.condnet = nn.Sequential(
weight_norm(
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm(
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
)
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.condnet(x)
x = x.transpose(1, 2)
return torch.abs(self.classifier(x).squeeze(-1))
class CausalConvRNNF0Predictor(nn.Module):
def __init__(self,
num_class: int = 1,
in_channels: int = 80,
cond_channels: int = 512
):
super().__init__()
self.num_class = num_class
self.condnet = nn.Sequential(
weight_norm(
CausalConv1d(in_channels, cond_channels, kernel_size=4, causal_type='right')
),
nn.ELU(),
weight_norm(
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
),
nn.ELU(),
weight_norm(
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
),
nn.ELU(),
weight_norm(
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
),
nn.ELU(),
weight_norm(
CausalConv1d(cond_channels, cond_channels, kernel_size=3, causal_type='left')
),
nn.ELU(),
)
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
def forward(self, x: torch.Tensor, finalize: bool = True) -> torch.Tensor:
self.cuda()
if finalize is True:
print('x.device {} weight.device {}'.format(x.device, self.condnet[0].weight.device))
x = self.condnet[0](x)
else:
x = self.condnet[0](x[:, :, :-self.condnet[0].causal_padding], x[:, :, -self.condnet[0].causal_padding:])
for i in range(1, len(self.condnet)):
x = self.condnet[i](x)
x = x.transpose(1, 2)
return torch.abs(self.classifier(x).squeeze(-1))