Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
mport gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import matplotlib
|
| 4 |
+
import numpy as np
|
| 5 |
+
import os
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
import tempfile
|
| 10 |
+
from gradio_imageslider import ImageSlider
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
|
| 13 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
| 14 |
+
|
| 15 |
+
css = """
|
| 16 |
+
#img-display-container {
|
| 17 |
+
max-height: 100vh;
|
| 18 |
+
}
|
| 19 |
+
#img-display-input {
|
| 20 |
+
max-height: 80vh;
|
| 21 |
+
}
|
| 22 |
+
#img-display-output {
|
| 23 |
+
max-height: 80vh;
|
| 24 |
+
}
|
| 25 |
+
#download {
|
| 26 |
+
height: 62px;
|
| 27 |
+
}
|
| 28 |
+
"""
|
| 29 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 30 |
+
model_configs = {
|
| 31 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
| 32 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
| 33 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
| 34 |
+
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
|
| 35 |
+
}
|
| 36 |
+
encoder2name = {
|
| 37 |
+
'vits': 'Small',
|
| 38 |
+
'vitb': 'Base',
|
| 39 |
+
'vitl': 'Large',
|
| 40 |
+
'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint
|
| 41 |
+
}
|
| 42 |
+
encoder = 'vitl'
|
| 43 |
+
model_name = encoder2name[encoder]
|
| 44 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
| 45 |
+
filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model")
|
| 46 |
+
state_dict = torch.load(filepath, map_location="cpu")
|
| 47 |
+
model.load_state_dict(state_dict)
|
| 48 |
+
model = model.to(DEVICE).eval()
|
| 49 |
+
|
| 50 |
+
title = "# Depth Anything V2"
|
| 51 |
+
description = """Official demo for **Depth Anything V2**.
|
| 52 |
+
Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](https://depth-anything-v2.github.io), and [github](https://github.com/DepthAnything/Depth-Anything-V2) for more details."""
|
| 53 |
+
|
| 54 |
+
@spaces.GPU
|
| 55 |
+
def predict_depth(image):
|
| 56 |
+
return model.infer_image(image)
|
| 57 |
+
|
| 58 |
+
with gr.Blocks(css=css) as demo:
|
| 59 |
+
gr.Markdown(title)
|
| 60 |
+
gr.Markdown(description)
|
| 61 |
+
gr.Markdown("### Depth Prediction demo")
|
| 62 |
+
|
| 63 |
+
with gr.Row():
|
| 64 |
+
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
| 65 |
+
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
|
| 66 |
+
submit = gr.Button(value="Compute Depth")
|
| 67 |
+
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
|
| 68 |
+
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
|
| 69 |
+
|
| 70 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
| 71 |
+
|
| 72 |
+
def on_submit(image):
|
| 73 |
+
original_image = image.copy()
|
| 74 |
+
|
| 75 |
+
h, w = image.shape[:2]
|
| 76 |
+
|
| 77 |
+
depth = predict_depth(image[:, :, ::-1])
|
| 78 |
+
|
| 79 |
+
raw_depth = Image.fromarray(depth.astype('uint16'))
|
| 80 |
+
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 81 |
+
raw_depth.save(tmp_raw_depth.name)
|
| 82 |
+
|
| 83 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
| 84 |
+
depth = depth.astype(np.uint8)
|
| 85 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
| 86 |
+
|
| 87 |
+
gray_depth = Image.fromarray(depth)
|
| 88 |
+
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
| 89 |
+
gray_depth.save(tmp_gray_depth.name)
|
| 90 |
+
|
| 91 |
+
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
|
| 92 |
+
|
| 93 |
+
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
|
| 94 |
+
|
| 95 |
+
example_files = os.listdir('assets/examples')
|
| 96 |
+
example_files.sort()
|
| 97 |
+
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
| 98 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if __name__ == '__main__':
|
| 102 |
+
demo.queue().launch(share=True)
|