Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
from audiocraft.models import MusicGen
|
| 5 |
+
import os
|
| 6 |
+
import numpy as np
|
| 7 |
+
import base64
|
| 8 |
+
|
| 9 |
+
genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical",
|
| 10 |
+
"Lofi", "Chillpop","Country","R&G", "Folk","Heavy Metal",
|
| 11 |
+
"EDM", "Soil", "Funk","Reggae", "Disco", "Punk Rock", "House",
|
| 12 |
+
"Techno","Indie Rock", "Grunge", "Ambient","Gospel", "Latin Music","Grime" ,"Trap", "Psychedelic Rock" ]
|
| 13 |
+
|
| 14 |
+
@st.cache_resource()
|
| 15 |
+
def load_model():
|
| 16 |
+
model = MusicGen.get_pretrained('facebook/musicgen-melody')
|
| 17 |
+
return model
|
| 18 |
+
|
| 19 |
+
def generate_music_tensors(descriptions, duration: int):
|
| 20 |
+
model = load_model()
|
| 21 |
+
# model = load_model().to('cpu')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
model.set_generation_params(
|
| 25 |
+
use_sampling=True,
|
| 26 |
+
top_k=250,
|
| 27 |
+
duration=duration
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
with st.spinner("Generating Music..."):
|
| 31 |
+
output = model.generate(
|
| 32 |
+
descriptions=descriptions,
|
| 33 |
+
progress=True,
|
| 34 |
+
return_tokens=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
st.success("Music Generation Complete!")
|
| 38 |
+
return output
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def save_audio(samples: torch.Tensor):
|
| 42 |
+
sample_rate = 30000
|
| 43 |
+
save_path = "audio_output"
|
| 44 |
+
assert samples.dim() == 2 or samples.dim() == 3
|
| 45 |
+
|
| 46 |
+
samples = samples.detach().cpu()
|
| 47 |
+
if samples.dim() == 2:
|
| 48 |
+
samples = samples[None, ...]
|
| 49 |
+
|
| 50 |
+
for idx, audio in enumerate(samples):
|
| 51 |
+
audio_path = os.path.join(save_path, f"audio_{idx}.wav")
|
| 52 |
+
torchaudio.save(audio_path, audio, sample_rate)
|
| 53 |
+
|
| 54 |
+
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
| 55 |
+
with open(bin_file, 'rb') as f:
|
| 56 |
+
data = f.read()
|
| 57 |
+
bin_str = base64.b64encode(data).decode()
|
| 58 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
|
| 59 |
+
return href
|
| 60 |
+
|
| 61 |
+
st.set_page_config(
|
| 62 |
+
page_icon= "musical_note",
|
| 63 |
+
page_title= "Music Gen"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
def main():
|
| 67 |
+
with st.sidebar:
|
| 68 |
+
st.header("""⚙️Generate Music ⚙️""",divider="rainbow")
|
| 69 |
+
st.text("")
|
| 70 |
+
st.subheader("1. Enter your music description.......")
|
| 71 |
+
bpm = st.number_input("Enter Speed in BPM", min_value=60)
|
| 72 |
+
|
| 73 |
+
text_area = st.text_area('Ex : 80s rock song with guitar and drums')
|
| 74 |
+
st.text('')
|
| 75 |
+
# Dropdown for genres
|
| 76 |
+
selected_genre = st.selectbox("Select Genre", genres)
|
| 77 |
+
|
| 78 |
+
st.subheader("2. Select time duration (In Seconds)")
|
| 79 |
+
time_slider = st.slider("Select time duration (In Seconds)", 0, 10, 10)
|
| 80 |
+
# time_slider = st.slider("Select time duration (In Minutes)", 0,300,10, step=1)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
st.title("""🎵 Song Lab AI Melody-Model 🎵""")
|
| 84 |
+
st.text('')
|
| 85 |
+
left_co,right_co = st.columns(2)
|
| 86 |
+
left_co.write("""Music Generation through a prompt""")
|
| 87 |
+
left_co.write(("""PS : First generation may take some time ......."""))
|
| 88 |
+
|
| 89 |
+
if st.sidebar.button('Generate !'):
|
| 90 |
+
with left_co:
|
| 91 |
+
st.text('')
|
| 92 |
+
st.text('')
|
| 93 |
+
st.text('')
|
| 94 |
+
st.text('')
|
| 95 |
+
st.text('')
|
| 96 |
+
st.text('')
|
| 97 |
+
st.text('\n\n')
|
| 98 |
+
st.subheader("Generated Music")
|
| 99 |
+
|
| 100 |
+
# Generate audio
|
| 101 |
+
# descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(5)]
|
| 102 |
+
descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(1)] # Change the batch size to 1
|
| 103 |
+
music_tensors = generate_music_tensors(descriptions, time_slider)
|
| 104 |
+
|
| 105 |
+
# Only play the full audio for index 0
|
| 106 |
+
idx = 0
|
| 107 |
+
music_tensor = music_tensors[idx]
|
| 108 |
+
save_music_file = save_audio(music_tensor)
|
| 109 |
+
audio_filepath = f'/audio_output/audio_{idx}.wav'
|
| 110 |
+
audio_file = open(audio_filepath, 'rb')
|
| 111 |
+
audio_bytes = audio_file.read()
|
| 112 |
+
|
| 113 |
+
# Play the full audio
|
| 114 |
+
st.audio(audio_bytes, format='audio/wav')
|
| 115 |
+
st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
if __name__ == "__main__":
|
| 119 |
+
main()
|
| 120 |
+
|