Commit
·
5d1ef4b
1
Parent(s):
9aa1873
changing to app.py
Browse files- main.py → app.py +40 -38
main.py → app.py
RENAMED
|
@@ -107,29 +107,37 @@ def generate_visual(prompt, max_tokens=50, gamma=15, confidence_threshold=0.5):
|
|
| 107 |
|
| 108 |
steps = []
|
| 109 |
|
| 110 |
-
# Track the
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
| 114 |
|
| 115 |
def build_html():
|
| 116 |
html = "<div style='font-family: monospace;'>"
|
| 117 |
|
| 118 |
-
#
|
| 119 |
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
|
| 120 |
-
html += f"<b>Final Output:</b><br/>"
|
| 121 |
-
if
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
token_text = tokenizer.decode([token_id])
|
| 124 |
token_display = token_text.replace("<", "<").replace(">", ">")
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
if token_metadata[i] == 'accepted':
|
| 129 |
html += f"<span style='background: #66CC66; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token_display}</span>"
|
| 130 |
-
elif
|
| 131 |
html += f"<span style='background: #5AADCC; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token_display}</span>"
|
| 132 |
-
elif
|
| 133 |
html += f"<span style='background: #FF8B9A; padding: 2px 4px; margin: 1px; text-decoration: line-through; border-radius: 3px;'>{token_display}</span>"
|
| 134 |
else:
|
| 135 |
html += token_display
|
|
@@ -137,7 +145,7 @@ def generate_visual(prompt, max_tokens=50, gamma=15, confidence_threshold=0.5):
|
|
| 137 |
|
| 138 |
# Acceptance rate
|
| 139 |
if total_drafted > 0:
|
| 140 |
-
html += f"<div style='margin-bottom: 20px; padding: 10px; background:
|
| 141 |
html += f"<b>Acceptance Rate:</b> {total_accepted}/{total_drafted} = {total_accepted/total_drafted*100:.1f}%"
|
| 142 |
html += "</div>"
|
| 143 |
|
|
@@ -163,17 +171,15 @@ def generate_visual(prompt, max_tokens=50, gamma=15, confidence_threshold=0.5):
|
|
| 163 |
return html
|
| 164 |
|
| 165 |
while result.shape[-1] - inputs["input_ids"].shape[-1] < max_tokens:
|
| 166 |
-
# Draft
|
| 167 |
drafted, drafted_probs, draft_kv = draft(result, gamma, confidence_threshold, eos_token, draft_kv)
|
| 168 |
drafted_token_ids = drafted[0, -len(drafted_probs):].tolist()
|
| 169 |
drafted_tokens = [tokenizer.decode([t]) for t in drafted_token_ids]
|
| 170 |
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
token_metadata.extend(['accepted'] * len(drafted_token_ids))
|
| 175 |
|
| 176 |
-
# Create a temporary step showing all drafted tokens as accepted
|
| 177 |
temp_step = {
|
| 178 |
"drafted": drafted_tokens,
|
| 179 |
"accepted": len(drafted_tokens),
|
|
@@ -182,36 +188,33 @@ def generate_visual(prompt, max_tokens=50, gamma=15, confidence_threshold=0.5):
|
|
| 182 |
steps.append(temp_step)
|
| 183 |
total_drafted += len(drafted_probs)
|
| 184 |
|
| 185 |
-
# Yield the state with drafted tokens showing
|
| 186 |
yield build_html()
|
| 187 |
|
| 188 |
-
# Verify
|
| 189 |
accepted_tokens, num_accepted, verify_kv = verify(drafted, drafted_probs, eos_token, verify_kv)
|
| 190 |
total_accepted += num_accepted
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
output_tokens = output_tokens[:-len(drafted_token_ids)]
|
| 195 |
-
token_metadata = token_metadata[:-len(drafted_token_ids)]
|
| 196 |
|
| 197 |
-
|
| 198 |
-
for i, token_id in enumerate(accepted_tokens):
|
| 199 |
-
output_tokens.append(token_id)
|
| 200 |
if i < num_accepted:
|
| 201 |
-
|
| 202 |
-
token_metadata.append('accepted')
|
| 203 |
else:
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
# Update the step with real acceptance info
|
| 208 |
steps[-1] = {
|
| 209 |
"drafted": drafted_tokens,
|
| 210 |
"accepted": num_accepted,
|
| 211 |
"resampled": tokenizer.decode([accepted_tokens[-1]]) if num_accepted < len(accepted_tokens) else None
|
| 212 |
}
|
| 213 |
|
| 214 |
-
# Yield the corrected state
|
| 215 |
yield build_html()
|
| 216 |
|
| 217 |
valid_len = result.shape[-1] + num_accepted
|
|
@@ -225,7 +228,6 @@ def generate_visual(prompt, max_tokens=50, gamma=15, confidence_threshold=0.5):
|
|
| 225 |
if eos_token in accepted_tokens or im_end_token in accepted_tokens:
|
| 226 |
break
|
| 227 |
|
| 228 |
-
# Final yield with complete output
|
| 229 |
yield build_html()
|
| 230 |
|
| 231 |
demo = gr.Interface(
|
|
@@ -252,8 +254,8 @@ demo = gr.Interface(
|
|
| 252 |
**Watch the tokens stream in real-time!** Draft tokens appear immediately, then get accepted or rejected by the verify model.
|
| 253 |
""",
|
| 254 |
examples=[
|
| 255 |
-
["What is
|
| 256 |
-
["def fibonacci(n):", 50, 15, 0.5],
|
| 257 |
["Explain the concept of attention in transformers", 60, 10, 0.6]
|
| 258 |
]
|
| 259 |
)
|
|
|
|
| 107 |
|
| 108 |
steps = []
|
| 109 |
|
| 110 |
+
# Track the clean output tokens (only accepted/resampled)
|
| 111 |
+
clean_output_tokens = []
|
| 112 |
+
all_tokens = []
|
| 113 |
+
# Metadata for ALL tokens: 'accepted', 'rejected', or 'resampled'
|
| 114 |
+
all_token_metadata = []
|
| 115 |
|
| 116 |
def build_html():
|
| 117 |
html = "<div style='font-family: monospace;'>"
|
| 118 |
|
| 119 |
+
# Clean final output box
|
| 120 |
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
|
| 121 |
+
html += f"<b>Final Output (Clean):</b><br/>"
|
| 122 |
+
if clean_output_tokens:
|
| 123 |
+
clean_text = tokenizer.decode(clean_output_tokens)
|
| 124 |
+
html += clean_text
|
| 125 |
+
html += "</div>"
|
| 126 |
+
|
| 127 |
+
# Detailed output box
|
| 128 |
+
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
|
| 129 |
+
html += f"<b>Detailed Output (All Tokens):</b><br/>"
|
| 130 |
+
if all_tokens:
|
| 131 |
+
for i, token_id in enumerate(all_tokens):
|
| 132 |
token_text = tokenizer.decode([token_id])
|
| 133 |
token_display = token_text.replace("<", "<").replace(">", ">")
|
| 134 |
|
| 135 |
+
if i < len(all_token_metadata):
|
| 136 |
+
if all_token_metadata[i] == 'accepted':
|
|
|
|
| 137 |
html += f"<span style='background: #66CC66; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token_display}</span>"
|
| 138 |
+
elif all_token_metadata[i] == 'resampled':
|
| 139 |
html += f"<span style='background: #5AADCC; padding: 2px 4px; margin: 1px; border-radius: 3px;'>{token_display}</span>"
|
| 140 |
+
elif all_token_metadata[i] == 'rejected':
|
| 141 |
html += f"<span style='background: #FF8B9A; padding: 2px 4px; margin: 1px; text-decoration: line-through; border-radius: 3px;'>{token_display}</span>"
|
| 142 |
else:
|
| 143 |
html += token_display
|
|
|
|
| 145 |
|
| 146 |
# Acceptance rate
|
| 147 |
if total_drafted > 0:
|
| 148 |
+
html += f"<div style='margin-bottom: 20px; padding: 10px; background: transparent; border: 2px solid white; border-radius: 5px;'>"
|
| 149 |
html += f"<b>Acceptance Rate:</b> {total_accepted}/{total_drafted} = {total_accepted/total_drafted*100:.1f}%"
|
| 150 |
html += "</div>"
|
| 151 |
|
|
|
|
| 171 |
return html
|
| 172 |
|
| 173 |
while result.shape[-1] - inputs["input_ids"].shape[-1] < max_tokens:
|
| 174 |
+
# Draft
|
| 175 |
drafted, drafted_probs, draft_kv = draft(result, gamma, confidence_threshold, eos_token, draft_kv)
|
| 176 |
drafted_token_ids = drafted[0, -len(drafted_probs):].tolist()
|
| 177 |
drafted_tokens = [tokenizer.decode([t]) for t in drafted_token_ids]
|
| 178 |
|
| 179 |
+
clean_output_tokens.extend(drafted_token_ids)
|
| 180 |
+
all_tokens.extend(drafted_token_ids)
|
| 181 |
+
all_token_metadata.extend(['accepted'] * len(drafted_token_ids))
|
|
|
|
| 182 |
|
|
|
|
| 183 |
temp_step = {
|
| 184 |
"drafted": drafted_tokens,
|
| 185 |
"accepted": len(drafted_tokens),
|
|
|
|
| 188 |
steps.append(temp_step)
|
| 189 |
total_drafted += len(drafted_probs)
|
| 190 |
|
|
|
|
| 191 |
yield build_html()
|
| 192 |
|
| 193 |
+
# Verify
|
| 194 |
accepted_tokens, num_accepted, verify_kv = verify(drafted, drafted_probs, eos_token, verify_kv)
|
| 195 |
total_accepted += num_accepted
|
| 196 |
|
| 197 |
+
clean_output_tokens = clean_output_tokens[:-len(drafted_token_ids)]
|
| 198 |
+
all_token_metadata = all_token_metadata[:-len(drafted_token_ids)]
|
|
|
|
|
|
|
| 199 |
|
| 200 |
+
for i, token_id in enumerate(drafted_token_ids):
|
|
|
|
|
|
|
| 201 |
if i < num_accepted:
|
| 202 |
+
all_token_metadata.append('accepted')
|
|
|
|
| 203 |
else:
|
| 204 |
+
all_token_metadata.append('rejected')
|
| 205 |
+
|
| 206 |
+
clean_output_tokens.extend(accepted_tokens)
|
| 207 |
+
|
| 208 |
+
if num_accepted < len(accepted_tokens):
|
| 209 |
+
all_tokens.append(accepted_tokens[-1])
|
| 210 |
+
all_token_metadata.append('resampled')
|
| 211 |
|
|
|
|
| 212 |
steps[-1] = {
|
| 213 |
"drafted": drafted_tokens,
|
| 214 |
"accepted": num_accepted,
|
| 215 |
"resampled": tokenizer.decode([accepted_tokens[-1]]) if num_accepted < len(accepted_tokens) else None
|
| 216 |
}
|
| 217 |
|
|
|
|
| 218 |
yield build_html()
|
| 219 |
|
| 220 |
valid_len = result.shape[-1] + num_accepted
|
|
|
|
| 228 |
if eos_token in accepted_tokens or im_end_token in accepted_tokens:
|
| 229 |
break
|
| 230 |
|
|
|
|
| 231 |
yield build_html()
|
| 232 |
|
| 233 |
demo = gr.Interface(
|
|
|
|
| 254 |
**Watch the tokens stream in real-time!** Draft tokens appear immediately, then get accepted or rejected by the verify model.
|
| 255 |
""",
|
| 256 |
examples=[
|
| 257 |
+
["What is the capital of France?", 80, 15, 0.5],
|
| 258 |
+
["Complete the python function \n def fibonacci(n):", 50, 15, 0.5],
|
| 259 |
["Explain the concept of attention in transformers", 60, 10, 0.6]
|
| 260 |
]
|
| 261 |
)
|