Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import AutoProcessor, AutoModel
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import cv2
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from tempfile import NamedTemporaryFile
|
| 9 |
+
|
| 10 |
+
MODEL_NAME = "microsoft/xclip-base-patch16-zero-shot"
|
| 11 |
+
CLIP_LEN = 32
|
| 12 |
+
|
| 13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
|
| 15 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 16 |
+
model = AutoModel.from_pretrained(MODEL_NAME).to(device)
|
| 17 |
+
|
| 18 |
+
def get_video_length(file_path):
|
| 19 |
+
cap = cv2.VideoCapture(file_path)
|
| 20 |
+
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 21 |
+
cap.release()
|
| 22 |
+
return length
|
| 23 |
+
|
| 24 |
+
def read_video_opencv(file_path, indices):
|
| 25 |
+
frames = []
|
| 26 |
+
failed_indices = []
|
| 27 |
+
|
| 28 |
+
cap = cv2.VideoCapture(file_path)
|
| 29 |
+
if not cap.isOpened():
|
| 30 |
+
print(f"Error opening video file: {file_path}")
|
| 31 |
+
return frames
|
| 32 |
+
|
| 33 |
+
max_index = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
|
| 34 |
+
for idx in indices:
|
| 35 |
+
if idx <= max_index:
|
| 36 |
+
frame = get_frame_with_opened_cap(cap, idx)
|
| 37 |
+
if frame is not None:
|
| 38 |
+
frames.append(frame)
|
| 39 |
+
else:
|
| 40 |
+
failed_indices.append(idx)
|
| 41 |
+
else:
|
| 42 |
+
failed_indices.append(idx)
|
| 43 |
+
cap.release()
|
| 44 |
+
|
| 45 |
+
if failed_indices:
|
| 46 |
+
print(f"Failed to extract frames at indices: {failed_indices}")
|
| 47 |
+
return frames
|
| 48 |
+
|
| 49 |
+
def get_frame_with_opened_cap(cap, index):
|
| 50 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, index)
|
| 51 |
+
ret, frame = cap.read()
|
| 52 |
+
if ret:
|
| 53 |
+
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 54 |
+
return None
|
| 55 |
+
|
| 56 |
+
def sample_uniform_frame_indices(clip_len, seg_len):
|
| 57 |
+
if seg_len < clip_len:
|
| 58 |
+
repeat_factor = np.ceil(clip_len / seg_len).astype(int)
|
| 59 |
+
indices = np.arange(seg_len).tolist() * repeat_factor
|
| 60 |
+
indices = indices[:clip_len]
|
| 61 |
+
else:
|
| 62 |
+
spacing = seg_len // clip_len
|
| 63 |
+
indices = [i * spacing for i in range(clip_len)]
|
| 64 |
+
return np.array(indices).astype(np.int64)
|
| 65 |
+
|
| 66 |
+
def concatenate_frames(frames, clip_len):
|
| 67 |
+
layout = { 32: (4, 8) }
|
| 68 |
+
rows, cols = layout[clip_len]
|
| 69 |
+
combined_image = Image.new('RGB', (frames[0].shape[1]*cols, frames[0].shape[0]*rows))
|
| 70 |
+
frame_iter = iter(frames)
|
| 71 |
+
y_offset = 0
|
| 72 |
+
for i in range(rows):
|
| 73 |
+
x_offset = 0
|
| 74 |
+
for j in range(cols):
|
| 75 |
+
img = Image.fromarray(next(frame_iter))
|
| 76 |
+
combined_image.paste(img, (x_offset, y_offset))
|
| 77 |
+
x_offset += frames[0].shape[1]
|
| 78 |
+
y_offset += frames[0].shape[0]
|
| 79 |
+
return combined_image
|
| 80 |
+
|
| 81 |
+
def model_interface(uploaded_video, activity):
|
| 82 |
+
video_length = get_video_length(uploaded_video)
|
| 83 |
+
indices = sample_uniform_frame_indices(CLIP_LEN, seg_len=video_length)
|
| 84 |
+
video = read_video_opencv(uploaded_video, indices)
|
| 85 |
+
concatenated_image = concatenate_frames(video, CLIP_LEN)
|
| 86 |
+
|
| 87 |
+
activities_list = [activity, "other"]
|
| 88 |
+
inputs = processor(
|
| 89 |
+
text=activities_list,
|
| 90 |
+
videos=list(video),
|
| 91 |
+
return_tensors="pt",
|
| 92 |
+
padding=True,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
for key, value in inputs.items():
|
| 96 |
+
if isinstance(value, torch.Tensor):
|
| 97 |
+
inputs[key] = value.to(device)
|
| 98 |
+
|
| 99 |
+
with torch.no_grad():
|
| 100 |
+
outputs = model(**inputs)
|
| 101 |
+
|
| 102 |
+
logits_per_video = outputs.logits_per_video
|
| 103 |
+
probs = logits_per_video.softmax(dim=1)
|
| 104 |
+
|
| 105 |
+
results_probs = []
|
| 106 |
+
results_logits = []
|
| 107 |
+
max_prob_index = torch.argmax(probs[0]).item()
|
| 108 |
+
for i in range(len(activities_list)):
|
| 109 |
+
current_activity = activities_list[i]
|
| 110 |
+
prob = float(probs[0][i].cpu())
|
| 111 |
+
logit = float(logits_per_video[0][i].cpu())
|
| 112 |
+
results_probs.append((current_activity, f"Probability: {prob * 100:.2f}%"))
|
| 113 |
+
results_logits.append((current_activity, f"Raw Score: {logit:.2f}"))
|
| 114 |
+
|
| 115 |
+
likely_label = activities_list[max_prob_index]
|
| 116 |
+
likely_probability = float(probs[0][max_prob_index].cpu()) * 100
|
| 117 |
+
|
| 118 |
+
return concatenated_image, results_probs, results_logits, [likely_label, likely_probability]
|
| 119 |
+
|
| 120 |
+
iface = gr.Interface(
|
| 121 |
+
fn=model_interface,
|
| 122 |
+
inputs=[
|
| 123 |
+
gr.Video(label="Upload a Video"),
|
| 124 |
+
gr.Textbox(label="Activity to Detect")
|
| 125 |
+
],
|
| 126 |
+
outputs=[
|
| 127 |
+
gr.Image(label="Concatenated Frames"),
|
| 128 |
+
gr.Dataframe(headers=["Activity", "Probability"], label="Probabilities"),
|
| 129 |
+
gr.Dataframe(headers=["Activity", "Raw Score"], label="Raw Scores"),
|
| 130 |
+
gr.Textbox(label="Most Likely Activity")
|
| 131 |
+
],
|
| 132 |
+
title="Video Activity Classifier",
|
| 133 |
+
description="""
|
| 134 |
+
**Instructions:**
|
| 135 |
+
|
| 136 |
+
1. **Upload a Video**: Select a video file to upload.
|
| 137 |
+
2. **Enter Activity Label**: Specify the activity you want to detect in the video.
|
| 138 |
+
3. **View Results**:
|
| 139 |
+
- The concatenated frames from the video will be displayed.
|
| 140 |
+
- Probabilities and raw scores for the specified activity and the "other" category will be shown.
|
| 141 |
+
- The most likely activity detected in the video will be displayed.
|
| 142 |
+
"""
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
if __name__ == "__main__":
|
| 146 |
+
iface.launch()
|