Spaces:
Running
on
Zero
Running
on
Zero
xinjie.wang
commited on
Commit
·
517c236
0
Parent(s):
Initial clean commit
Browse files- .gitattributes +35 -0
- README.md +14 -0
- app.py +734 -0
- app_style.py +27 -0
- embodied_gen/utils/gpt_clients.py +249 -0
- embodied_gen/utils/gpt_config.yaml +14 -0
- requirements.txt +4 -0
.gitattributes
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: EmbodiedGen Gallery Explorer
|
| 3 |
+
emoji: 🐨
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: 🏛️ EmbodiedGen 3D Asset Gallery Explorer
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,734 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Project EmbodiedGen
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 14 |
+
# implied. See the License for the specific language governing
|
| 15 |
+
# permissions and limitations under the License.
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
gradio_tmp_dir = os.path.join(
|
| 20 |
+
os.path.dirname(os.path.abspath(__file__)), "gradio_cache"
|
| 21 |
+
)
|
| 22 |
+
os.makedirs(gradio_tmp_dir, exist_ok=True)
|
| 23 |
+
os.environ["GRADIO_TEMP_DIR"] = gradio_tmp_dir
|
| 24 |
+
|
| 25 |
+
import shutil
|
| 26 |
+
import uuid
|
| 27 |
+
import xml.etree.ElementTree as ET
|
| 28 |
+
from pathlib import Path
|
| 29 |
+
from typing import Any, Dict, Tuple
|
| 30 |
+
|
| 31 |
+
import gradio as gr
|
| 32 |
+
import pandas as pd
|
| 33 |
+
import yaml
|
| 34 |
+
from app_style import custom_theme, lighting_css
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from embodied_gen.utils.gpt_clients import GPT_CLIENT as gpt_client
|
| 38 |
+
|
| 39 |
+
gpt_client.check_connection()
|
| 40 |
+
GPT_AVAILABLE = True
|
| 41 |
+
except Exception as e:
|
| 42 |
+
gpt_client = None
|
| 43 |
+
GPT_AVAILABLE = False
|
| 44 |
+
print(
|
| 45 |
+
f"Warning: GPT client could not be initialized. Search will be disabled. Error: {e}"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# --- Configuration & Data Loading ---
|
| 50 |
+
VERSION = "v0.1.5"
|
| 51 |
+
RUNNING_MODE = "hf_remote" # local or hf_remote
|
| 52 |
+
CSV_FILE = "dataset_index.csv"
|
| 53 |
+
import spaces
|
| 54 |
+
@spaces.GPU
|
| 55 |
+
def fake_gpu_init():
|
| 56 |
+
pass
|
| 57 |
+
fake_gpu_init()
|
| 58 |
+
|
| 59 |
+
if RUNNING_MODE == "local":
|
| 60 |
+
DATA_ROOT = "/horizon-bucket/robot_lab/datasets/embodiedgen/assets"
|
| 61 |
+
elif RUNNING_MODE == "hf_remote":
|
| 62 |
+
from huggingface_hub import snapshot_download
|
| 63 |
+
|
| 64 |
+
snapshot_download(
|
| 65 |
+
repo_id="HorizonRobotics/EmbodiedGenData",
|
| 66 |
+
repo_type="dataset",
|
| 67 |
+
allow_patterns=f"dataset/**",
|
| 68 |
+
local_dir="EmbodiedGenData",
|
| 69 |
+
local_dir_use_symlinks=False,
|
| 70 |
+
)
|
| 71 |
+
DATA_ROOT = "EmbodiedGenData/dataset"
|
| 72 |
+
else:
|
| 73 |
+
raise ValueError(
|
| 74 |
+
f"Unknown RUNNING_MODE: {RUNNING_MODE}, must be 'local' or 'hf_remote'."
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
csv_path = os.path.join(DATA_ROOT, CSV_FILE)
|
| 78 |
+
df = pd.read_csv(csv_path)
|
| 79 |
+
TMP_DIR = os.path.join(
|
| 80 |
+
os.path.dirname(os.path.abspath(__file__)), "sessions/asset_viewer"
|
| 81 |
+
)
|
| 82 |
+
os.makedirs(TMP_DIR, exist_ok=True)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# --- Custom CSS for Styling ---
|
| 86 |
+
css = """
|
| 87 |
+
.gradio-container .gradio-group { box-shadow: 0 2px 4px rgba(0,0,0,0.05) !important; }
|
| 88 |
+
#asset-gallery { border: 1px solid #E5E7EB; border-radius: 8px; padding: 8px; background-color: #F9FAFB; }
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
lighting_css = """
|
| 92 |
+
<style>
|
| 93 |
+
#visual_mesh canvas { filter: brightness(2.2) !important; }
|
| 94 |
+
#collision_mesh_a canvas, #collision_mesh_b canvas { filter: brightness(1.0) !important; }
|
| 95 |
+
</style>
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
_prev_temp = {}
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
def _unique_path(
|
| 102 |
+
src_path: str | None, session_hash: str, kind: str
|
| 103 |
+
) -> str | None:
|
| 104 |
+
"""Link/copy src to GRADIO_TEMP_DIR/session_hash with random filename. Always return a fresh URL."""
|
| 105 |
+
if not src_path:
|
| 106 |
+
return None
|
| 107 |
+
tmp_root = (
|
| 108 |
+
Path(os.environ.get("GRADIO_TEMP_DIR", "/tmp"))
|
| 109 |
+
/ "model3d-cache"
|
| 110 |
+
/ session_hash
|
| 111 |
+
)
|
| 112 |
+
tmp_root.mkdir(parents=True, exist_ok=True)
|
| 113 |
+
|
| 114 |
+
# rolling cleanup for same kind
|
| 115 |
+
prev = _prev_temp.get(session_hash, {})
|
| 116 |
+
old = prev.get(kind)
|
| 117 |
+
if old and old.exists():
|
| 118 |
+
old.unlink()
|
| 119 |
+
|
| 120 |
+
ext = Path(src_path).suffix or ".glb"
|
| 121 |
+
dst = tmp_root / f"{kind}-{uuid.uuid4().hex}{ext}"
|
| 122 |
+
shutil.copy2(src_path, dst)
|
| 123 |
+
|
| 124 |
+
prev[kind] = dst
|
| 125 |
+
_prev_temp[session_hash] = prev
|
| 126 |
+
return str(dst)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# --- Helper Functions (data filtering) ---
|
| 130 |
+
def get_primary_categories():
|
| 131 |
+
return sorted(df["primary_category"].dropna().unique())
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def get_secondary_categories(primary):
|
| 135 |
+
if not primary:
|
| 136 |
+
return []
|
| 137 |
+
return sorted(
|
| 138 |
+
df[df["primary_category"] == primary]["secondary_category"]
|
| 139 |
+
.dropna()
|
| 140 |
+
.unique()
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def get_categories(primary, secondary):
|
| 145 |
+
if not primary or not secondary:
|
| 146 |
+
return []
|
| 147 |
+
return sorted(
|
| 148 |
+
df[
|
| 149 |
+
(df["primary_category"] == primary)
|
| 150 |
+
& (df["secondary_category"] == secondary)
|
| 151 |
+
]["category"]
|
| 152 |
+
.dropna()
|
| 153 |
+
.unique()
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def get_assets(primary, secondary, category):
|
| 158 |
+
if not primary or not secondary:
|
| 159 |
+
return [], gr.update(interactive=False), pd.DataFrame()
|
| 160 |
+
|
| 161 |
+
subset = df[
|
| 162 |
+
(df["primary_category"] == primary)
|
| 163 |
+
& (df["secondary_category"] == secondary)
|
| 164 |
+
]
|
| 165 |
+
if category:
|
| 166 |
+
subset = subset[subset["category"] == category]
|
| 167 |
+
|
| 168 |
+
items = []
|
| 169 |
+
for row in subset.itertuples():
|
| 170 |
+
asset_dir = os.path.join(DATA_ROOT, row.asset_dir)
|
| 171 |
+
video_path = None
|
| 172 |
+
if pd.notna(asset_dir) and os.path.exists(asset_dir):
|
| 173 |
+
for f in os.listdir(asset_dir):
|
| 174 |
+
if f.lower().endswith(".mp4"):
|
| 175 |
+
video_path = os.path.join(asset_dir, f)
|
| 176 |
+
break
|
| 177 |
+
items.append(
|
| 178 |
+
video_path
|
| 179 |
+
if video_path
|
| 180 |
+
else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview"
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
return items, gr.update(interactive=True), subset
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def search_assets(query: str, top_k: int):
|
| 187 |
+
if not GPT_AVAILABLE or not query:
|
| 188 |
+
gr.Warning(
|
| 189 |
+
"GPT client is not available or query is empty. Cannot perform search."
|
| 190 |
+
)
|
| 191 |
+
return [], gr.update(interactive=False), pd.DataFrame()
|
| 192 |
+
|
| 193 |
+
gr.Info(f"Searching for assets matching: '{query}'...")
|
| 194 |
+
|
| 195 |
+
keywords = query.split()
|
| 196 |
+
keyword_filter = pd.Series([False] * len(df), index=df.index)
|
| 197 |
+
for keyword in keywords:
|
| 198 |
+
keyword_filter |= df['description'].str.contains(
|
| 199 |
+
keyword, case=False, na=False
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
candidates = df[keyword_filter]
|
| 203 |
+
|
| 204 |
+
if len(candidates) > 100:
|
| 205 |
+
candidates = candidates.head(100)
|
| 206 |
+
|
| 207 |
+
if candidates.empty:
|
| 208 |
+
gr.Warning("No assets found matching the keywords.")
|
| 209 |
+
return [], gr.update(interactive=True), pd.DataFrame()
|
| 210 |
+
|
| 211 |
+
try:
|
| 212 |
+
descriptions = [
|
| 213 |
+
f"{idx}: {desc}" for idx, desc in candidates['description'].items()
|
| 214 |
+
]
|
| 215 |
+
descriptions_text = "\n".join(descriptions)
|
| 216 |
+
|
| 217 |
+
prompt = f"""
|
| 218 |
+
A user is searching for 3D assets with the query: "{query}".
|
| 219 |
+
Below is a list of available assets, each with an ID and a description.
|
| 220 |
+
Please evaluate how well each asset description matches the user's query and rate them on a scale from 0 to 10, where 10 is a perfect match.
|
| 221 |
+
|
| 222 |
+
Your task is to return a list of the top {top_k} asset IDs, sorted from the most relevant to the least relevant.
|
| 223 |
+
The output format must be a simple comma-separated list of IDs, for example: "123,45,678". Do not add any other text.
|
| 224 |
+
|
| 225 |
+
Asset Descriptions:
|
| 226 |
+
{descriptions_text}
|
| 227 |
+
|
| 228 |
+
User Query: "{query}"
|
| 229 |
+
|
| 230 |
+
Top {top_k} sorted asset IDs:
|
| 231 |
+
"""
|
| 232 |
+
response = gpt_client.query(prompt)
|
| 233 |
+
sorted_ids_str = response.strip().split(',')
|
| 234 |
+
sorted_ids = [
|
| 235 |
+
int(id_str.strip())
|
| 236 |
+
for id_str in sorted_ids_str
|
| 237 |
+
if id_str.strip().isdigit()
|
| 238 |
+
]
|
| 239 |
+
top_assets = df.loc[sorted_ids].head(top_k)
|
| 240 |
+
except Exception as e:
|
| 241 |
+
gr.Error(f"An error occurred while using GPT for ranking: {e}")
|
| 242 |
+
top_assets = candidates.head(top_k)
|
| 243 |
+
|
| 244 |
+
items = []
|
| 245 |
+
for row in top_assets.itertuples():
|
| 246 |
+
asset_dir = os.path.join(DATA_ROOT, row.asset_dir)
|
| 247 |
+
video_path = None
|
| 248 |
+
if pd.notna(row.asset_dir) and os.path.exists(asset_dir):
|
| 249 |
+
for f in os.listdir(asset_dir):
|
| 250 |
+
if f.lower().endswith(".mp4"):
|
| 251 |
+
video_path = os.path.join(asset_dir, f)
|
| 252 |
+
break
|
| 253 |
+
items.append(
|
| 254 |
+
video_path
|
| 255 |
+
if video_path
|
| 256 |
+
else "https://dummyimage.com/512x512/cccccc/000000&text=No+Preview"
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
gr.Info(f"Found {len(items)} assets.")
|
| 260 |
+
return items, gr.update(interactive=True), top_assets
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
# --- Mesh extraction ---
|
| 264 |
+
def _extract_mesh_paths(row) -> Tuple[str | None, str | None, str]:
|
| 265 |
+
desc = row["description"]
|
| 266 |
+
urdf_path = os.path.join(DATA_ROOT, row["urdf_path"])
|
| 267 |
+
asset_dir = os.path.join(DATA_ROOT, row["asset_dir"])
|
| 268 |
+
visual_mesh_path = None
|
| 269 |
+
collision_mesh_path = None
|
| 270 |
+
|
| 271 |
+
if pd.notna(urdf_path) and os.path.exists(urdf_path):
|
| 272 |
+
try:
|
| 273 |
+
tree = ET.parse(urdf_path)
|
| 274 |
+
root = tree.getroot()
|
| 275 |
+
|
| 276 |
+
visual_mesh_element = root.find('.//visual/geometry/mesh')
|
| 277 |
+
if visual_mesh_element is not None:
|
| 278 |
+
visual_mesh_filename = visual_mesh_element.get('filename')
|
| 279 |
+
if visual_mesh_filename:
|
| 280 |
+
glb_filename = (
|
| 281 |
+
os.path.splitext(visual_mesh_filename)[0] + ".glb"
|
| 282 |
+
)
|
| 283 |
+
potential_path = os.path.join(asset_dir, glb_filename)
|
| 284 |
+
if os.path.exists(potential_path):
|
| 285 |
+
visual_mesh_path = potential_path
|
| 286 |
+
|
| 287 |
+
collision_mesh_element = root.find('.//collision/geometry/mesh')
|
| 288 |
+
if collision_mesh_element is not None:
|
| 289 |
+
collision_mesh_filename = collision_mesh_element.get(
|
| 290 |
+
'filename'
|
| 291 |
+
)
|
| 292 |
+
if collision_mesh_filename:
|
| 293 |
+
potential_collision_path = os.path.join(
|
| 294 |
+
asset_dir, collision_mesh_filename
|
| 295 |
+
)
|
| 296 |
+
if os.path.exists(potential_collision_path):
|
| 297 |
+
collision_mesh_path = potential_collision_path
|
| 298 |
+
|
| 299 |
+
except ET.ParseError:
|
| 300 |
+
desc = f"Error: Failed to parse URDF at {urdf_path}. {desc}"
|
| 301 |
+
except Exception as e:
|
| 302 |
+
desc = f"An error occurred while processing URDF: {str(e)}. {desc}"
|
| 303 |
+
|
| 304 |
+
return visual_mesh_path, collision_mesh_path, desc
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def show_asset_from_gallery(
|
| 308 |
+
evt: gr.SelectData,
|
| 309 |
+
primary: str,
|
| 310 |
+
secondary: str,
|
| 311 |
+
category: str,
|
| 312 |
+
search_query: str,
|
| 313 |
+
gallery_df: pd.DataFrame,
|
| 314 |
+
):
|
| 315 |
+
"""Parse the selected asset and return raw paths + metadata."""
|
| 316 |
+
index = evt.index
|
| 317 |
+
|
| 318 |
+
if search_query and gallery_df is not None and not gallery_df.empty:
|
| 319 |
+
subset = gallery_df
|
| 320 |
+
else:
|
| 321 |
+
if not primary or not secondary:
|
| 322 |
+
return (
|
| 323 |
+
None, # visual_path
|
| 324 |
+
None, # collision_path
|
| 325 |
+
"Error: Primary or secondary category not selected.",
|
| 326 |
+
None, # asset_dir
|
| 327 |
+
None, # urdf_path
|
| 328 |
+
"N/A",
|
| 329 |
+
"N/A",
|
| 330 |
+
"N/A",
|
| 331 |
+
"N/A",
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
subset = df[
|
| 335 |
+
(df["primary_category"] == primary)
|
| 336 |
+
& (df["secondary_category"] == secondary)
|
| 337 |
+
]
|
| 338 |
+
if category:
|
| 339 |
+
subset = subset[subset["category"] == category]
|
| 340 |
+
|
| 341 |
+
if subset.empty or index >= len(subset):
|
| 342 |
+
return (
|
| 343 |
+
None,
|
| 344 |
+
None,
|
| 345 |
+
"Error: Selection index is out of bounds or data is missing.",
|
| 346 |
+
None,
|
| 347 |
+
None,
|
| 348 |
+
"N/A",
|
| 349 |
+
"N/A",
|
| 350 |
+
"N/A",
|
| 351 |
+
"N/A",
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
row = subset.iloc[index]
|
| 355 |
+
visual_path, collision_path, desc = _extract_mesh_paths(row)
|
| 356 |
+
|
| 357 |
+
urdf_path = os.path.join(DATA_ROOT, row["urdf_path"])
|
| 358 |
+
asset_dir = os.path.join(DATA_ROOT, row["asset_dir"])
|
| 359 |
+
|
| 360 |
+
# read extra info
|
| 361 |
+
est_type_text = "N/A"
|
| 362 |
+
est_height_text = "N/A"
|
| 363 |
+
est_mass_text = "N/A"
|
| 364 |
+
est_mu_text = "N/A"
|
| 365 |
+
|
| 366 |
+
if pd.notna(urdf_path) and os.path.exists(urdf_path):
|
| 367 |
+
try:
|
| 368 |
+
tree = ET.parse(urdf_path)
|
| 369 |
+
root = tree.getroot()
|
| 370 |
+
category_elem = root.find('.//extra_info/category')
|
| 371 |
+
if category_elem is not None and category_elem.text:
|
| 372 |
+
est_type_text = category_elem.text.strip()
|
| 373 |
+
height_elem = root.find('.//extra_info/real_height')
|
| 374 |
+
if height_elem is not None and height_elem.text:
|
| 375 |
+
est_height_text = height_elem.text.strip()
|
| 376 |
+
mass_elem = root.find('.//extra_info/min_mass')
|
| 377 |
+
if mass_elem is not None and mass_elem.text:
|
| 378 |
+
est_mass_text = mass_elem.text.strip()
|
| 379 |
+
mu_elem = root.find('.//collision/gazebo/mu2')
|
| 380 |
+
if mu_elem is not None and mu_elem.text:
|
| 381 |
+
est_mu_text = mu_elem.text.strip()
|
| 382 |
+
except Exception:
|
| 383 |
+
pass
|
| 384 |
+
|
| 385 |
+
return (
|
| 386 |
+
visual_path,
|
| 387 |
+
collision_path,
|
| 388 |
+
desc,
|
| 389 |
+
asset_dir,
|
| 390 |
+
urdf_path,
|
| 391 |
+
est_type_text,
|
| 392 |
+
est_height_text,
|
| 393 |
+
est_mass_text,
|
| 394 |
+
est_mu_text,
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
|
| 398 |
+
def render_meshes(
|
| 399 |
+
visual_path: str | None,
|
| 400 |
+
collision_path: str | None,
|
| 401 |
+
switch_viewer: bool,
|
| 402 |
+
req: gr.Request,
|
| 403 |
+
):
|
| 404 |
+
session_hash = getattr(req, "session_hash", "default")
|
| 405 |
+
|
| 406 |
+
if switch_viewer:
|
| 407 |
+
yield (
|
| 408 |
+
gr.update(value=None),
|
| 409 |
+
gr.update(value=None, visible=False),
|
| 410 |
+
gr.update(value=None, visible=True),
|
| 411 |
+
True,
|
| 412 |
+
)
|
| 413 |
+
else:
|
| 414 |
+
yield (
|
| 415 |
+
gr.update(value=None),
|
| 416 |
+
gr.update(value=None, visible=True),
|
| 417 |
+
gr.update(value=None, visible=False),
|
| 418 |
+
True,
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
visual_unique = (
|
| 422 |
+
_unique_path(visual_path, session_hash, "visual")
|
| 423 |
+
if visual_path
|
| 424 |
+
else None
|
| 425 |
+
)
|
| 426 |
+
collision_unique = (
|
| 427 |
+
_unique_path(collision_path, session_hash, "collision")
|
| 428 |
+
if collision_path
|
| 429 |
+
else None
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
if switch_viewer:
|
| 433 |
+
yield (
|
| 434 |
+
gr.update(value=visual_unique),
|
| 435 |
+
gr.update(value=None, visible=False),
|
| 436 |
+
gr.update(value=collision_unique, visible=True),
|
| 437 |
+
False,
|
| 438 |
+
)
|
| 439 |
+
else:
|
| 440 |
+
yield (
|
| 441 |
+
gr.update(value=visual_unique),
|
| 442 |
+
gr.update(value=collision_unique, visible=True),
|
| 443 |
+
gr.update(value=None, visible=False),
|
| 444 |
+
True,
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def create_asset_zip(asset_dir: str, req: gr.Request):
|
| 449 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 450 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 451 |
+
|
| 452 |
+
asset_folder_name = os.path.basename(os.path.normpath(asset_dir))
|
| 453 |
+
zip_path_base = os.path.join(user_dir, asset_folder_name)
|
| 454 |
+
|
| 455 |
+
archive_path = shutil.make_archive(
|
| 456 |
+
base_name=zip_path_base, format='zip', root_dir=asset_dir
|
| 457 |
+
)
|
| 458 |
+
gr.Info(f"✅ {asset_folder_name}.zip is ready and can be downloaded.")
|
| 459 |
+
|
| 460 |
+
return archive_path
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def start_session(req: gr.Request) -> None:
|
| 464 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 465 |
+
os.makedirs(user_dir, exist_ok=True)
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def end_session(req: gr.Request) -> None:
|
| 469 |
+
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 470 |
+
if os.path.exists(user_dir):
|
| 471 |
+
shutil.rmtree(user_dir)
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
# --- UI ---
|
| 475 |
+
with gr.Blocks(
|
| 476 |
+
theme=custom_theme,
|
| 477 |
+
css=css,
|
| 478 |
+
title="3D Asset Library",
|
| 479 |
+
) as demo:
|
| 480 |
+
# gr.HTML(lighting_css, visible=False)
|
| 481 |
+
gr.Markdown(
|
| 482 |
+
"""
|
| 483 |
+
## 🏛️ ***EmbodiedGen***: 3D Asset Gallery Explorer
|
| 484 |
+
|
| 485 |
+
**���� Version**: {VERSION}
|
| 486 |
+
<p style="display: flex; gap: 10px; flex-wrap: nowrap;">
|
| 487 |
+
<a href="https://horizonrobotics.github.io/EmbodiedGen">
|
| 488 |
+
<img alt="📖 Documentation" src="https://img.shields.io/badge/📖-Documentation-blue">
|
| 489 |
+
</a>
|
| 490 |
+
<a href="https://arxiv.org/abs/2506.10600">
|
| 491 |
+
<img alt="📄 arXiv" src="https://img.shields.io/badge/📄-arXiv-b31b1b">
|
| 492 |
+
</a>
|
| 493 |
+
<a href="https://github.com/HorizonRobotics/EmbodiedGen">
|
| 494 |
+
<img alt="💻 GitHub" src="https://img.shields.io/badge/GitHub-000000?logo=github">
|
| 495 |
+
</a>
|
| 496 |
+
<a href="https://www.youtube.com/watch?v=rG4odybuJRk">
|
| 497 |
+
<img alt="🎥 Video" src="https://img.shields.io/badge/🎥-Video-red">
|
| 498 |
+
</a>
|
| 499 |
+
</p>
|
| 500 |
+
|
| 501 |
+
Browse and visualize the EmbodiedGen 3D asset database. Select categories to filter and click on a preview to load the model.
|
| 502 |
+
|
| 503 |
+
""".format(
|
| 504 |
+
VERSION=VERSION
|
| 505 |
+
),
|
| 506 |
+
elem_classes=["header"],
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
primary_list = get_primary_categories()
|
| 510 |
+
primary_val = primary_list[0] if primary_list else None
|
| 511 |
+
secondary_list = get_secondary_categories(primary_val)
|
| 512 |
+
secondary_val = secondary_list[0] if secondary_list else None
|
| 513 |
+
category_list = get_categories(primary_val, secondary_val)
|
| 514 |
+
category_val = category_list[0] if category_list else None
|
| 515 |
+
asset_folder = gr.State(value=None)
|
| 516 |
+
gallery_df_state = gr.State()
|
| 517 |
+
|
| 518 |
+
switch_viewer_state = gr.State(value=False)
|
| 519 |
+
|
| 520 |
+
with gr.Row(equal_height=False):
|
| 521 |
+
with gr.Column(scale=1, min_width=350):
|
| 522 |
+
with gr.Group():
|
| 523 |
+
gr.Markdown("### Search Asset with Descriptions")
|
| 524 |
+
search_box = gr.Textbox(
|
| 525 |
+
label="🔎 Enter your search query",
|
| 526 |
+
placeholder="e.g., 'a red chair with four legs'",
|
| 527 |
+
interactive=GPT_AVAILABLE,
|
| 528 |
+
)
|
| 529 |
+
top_k_slider = gr.Slider(
|
| 530 |
+
minimum=1,
|
| 531 |
+
maximum=50,
|
| 532 |
+
value=10,
|
| 533 |
+
step=1,
|
| 534 |
+
label="Number of results",
|
| 535 |
+
interactive=GPT_AVAILABLE,
|
| 536 |
+
)
|
| 537 |
+
search_button = gr.Button(
|
| 538 |
+
"Search", variant="primary", interactive=GPT_AVAILABLE
|
| 539 |
+
)
|
| 540 |
+
if not GPT_AVAILABLE:
|
| 541 |
+
gr.Markdown(
|
| 542 |
+
"<p style='color: #ff4b4b;'>⚠️ GPT client not available. Search is disabled.</p>"
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
with gr.Group():
|
| 546 |
+
gr.Markdown("### Select Asset Category")
|
| 547 |
+
primary = gr.Dropdown(
|
| 548 |
+
choices=primary_list,
|
| 549 |
+
value=primary_val,
|
| 550 |
+
label="🗂️ Primary Category",
|
| 551 |
+
)
|
| 552 |
+
secondary = gr.Dropdown(
|
| 553 |
+
choices=secondary_list,
|
| 554 |
+
value=secondary_val,
|
| 555 |
+
label="📂 Secondary Category",
|
| 556 |
+
)
|
| 557 |
+
category = gr.Dropdown(
|
| 558 |
+
choices=category_list,
|
| 559 |
+
value=category_val,
|
| 560 |
+
label="🏷️ Asset Category",
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
with gr.Group():
|
| 564 |
+
initial_assets, _, initial_df = get_assets(
|
| 565 |
+
primary_val, secondary_val, category_val
|
| 566 |
+
)
|
| 567 |
+
gallery = gr.Gallery(
|
| 568 |
+
value=initial_assets,
|
| 569 |
+
label="🖼️ Asset Previews",
|
| 570 |
+
columns=3,
|
| 571 |
+
height="auto",
|
| 572 |
+
allow_preview=True,
|
| 573 |
+
elem_id="asset-gallery",
|
| 574 |
+
interactive=bool(category_val),
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
with gr.Column(scale=2, min_width=500):
|
| 578 |
+
with gr.Group():
|
| 579 |
+
with gr.Tabs():
|
| 580 |
+
with gr.TabItem("Visual Mesh") as t1:
|
| 581 |
+
viewer = gr.Model3D(
|
| 582 |
+
label="🧊 3D Model Viewer",
|
| 583 |
+
height=500,
|
| 584 |
+
clear_color=[0.95, 0.95, 0.95],
|
| 585 |
+
elem_id="visual_mesh",
|
| 586 |
+
)
|
| 587 |
+
with gr.TabItem("Collision Mesh") as t2:
|
| 588 |
+
collision_viewer_a = gr.Model3D(
|
| 589 |
+
label="🧊 Collision Mesh",
|
| 590 |
+
height=500,
|
| 591 |
+
clear_color=[0.95, 0.95, 0.95],
|
| 592 |
+
elem_id="collision_mesh_a",
|
| 593 |
+
visible=True,
|
| 594 |
+
)
|
| 595 |
+
collision_viewer_b = gr.Model3D(
|
| 596 |
+
label="🧊 Collision Mesh",
|
| 597 |
+
height=500,
|
| 598 |
+
clear_color=[0.95, 0.95, 0.95],
|
| 599 |
+
elem_id="collision_mesh_b",
|
| 600 |
+
visible=False,
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
t1.select(
|
| 604 |
+
fn=lambda: None,
|
| 605 |
+
js="() => { window.dispatchEvent(new Event('resize')); }",
|
| 606 |
+
)
|
| 607 |
+
t2.select(
|
| 608 |
+
fn=lambda: None,
|
| 609 |
+
js="() => { window.dispatchEvent(new Event('resize')); }",
|
| 610 |
+
)
|
| 611 |
+
|
| 612 |
+
with gr.Row():
|
| 613 |
+
est_type_text = gr.Textbox(
|
| 614 |
+
label="Asset category", interactive=False
|
| 615 |
+
)
|
| 616 |
+
est_height_text = gr.Textbox(
|
| 617 |
+
label="Real height(.m)", interactive=False
|
| 618 |
+
)
|
| 619 |
+
est_mass_text = gr.Textbox(
|
| 620 |
+
label="Mass(.kg)", interactive=False
|
| 621 |
+
)
|
| 622 |
+
est_mu_text = gr.Textbox(
|
| 623 |
+
label="Friction coefficient", interactive=False
|
| 624 |
+
)
|
| 625 |
+
with gr.Row():
|
| 626 |
+
desc_box = gr.Textbox(
|
| 627 |
+
label="📝 Asset Description", interactive=False
|
| 628 |
+
)
|
| 629 |
+
with gr.Accordion(label="Asset Details", open=False):
|
| 630 |
+
urdf_file = gr.Textbox(
|
| 631 |
+
label="URDF File Path", interactive=False, lines=2
|
| 632 |
+
)
|
| 633 |
+
with gr.Row():
|
| 634 |
+
extract_btn = gr.Button(
|
| 635 |
+
"📥 Extract Asset",
|
| 636 |
+
variant="primary",
|
| 637 |
+
interactive=False,
|
| 638 |
+
)
|
| 639 |
+
download_btn = gr.DownloadButton(
|
| 640 |
+
label="⬇️ Download Asset",
|
| 641 |
+
variant="primary",
|
| 642 |
+
interactive=False,
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
search_button.click(
|
| 646 |
+
fn=search_assets,
|
| 647 |
+
inputs=[search_box, top_k_slider],
|
| 648 |
+
outputs=[gallery, gallery, gallery_df_state],
|
| 649 |
+
)
|
| 650 |
+
search_box.submit(
|
| 651 |
+
fn=search_assets,
|
| 652 |
+
inputs=[search_box, top_k_slider],
|
| 653 |
+
outputs=[gallery, gallery, gallery_df_state],
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
def update_on_primary_change(p):
|
| 657 |
+
s_choices = get_secondary_categories(p)
|
| 658 |
+
initial_assets, gallery_update, initial_df = get_assets(p, None, None)
|
| 659 |
+
return (
|
| 660 |
+
gr.update(choices=s_choices, value=None),
|
| 661 |
+
gr.update(choices=[], value=None),
|
| 662 |
+
initial_assets,
|
| 663 |
+
gallery_update,
|
| 664 |
+
initial_df,
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
def update_on_secondary_change(p, s):
|
| 668 |
+
c_choices = get_categories(p, s)
|
| 669 |
+
asset_previews, gallery_update, gallery_df = get_assets(p, s, None)
|
| 670 |
+
return (
|
| 671 |
+
gr.update(choices=c_choices, value=None),
|
| 672 |
+
asset_previews,
|
| 673 |
+
gallery_update,
|
| 674 |
+
gallery_df,
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
def update_assets(p, s, c):
|
| 678 |
+
asset_previews, gallery_update, gallery_df = get_assets(p, s, c)
|
| 679 |
+
return asset_previews, gallery_update, gallery_df
|
| 680 |
+
|
| 681 |
+
primary.change(
|
| 682 |
+
fn=update_on_primary_change,
|
| 683 |
+
inputs=[primary],
|
| 684 |
+
outputs=[secondary, category, gallery, gallery, gallery_df_state],
|
| 685 |
+
)
|
| 686 |
+
secondary.change(
|
| 687 |
+
fn=update_on_secondary_change,
|
| 688 |
+
inputs=[primary, secondary],
|
| 689 |
+
outputs=[category, gallery, gallery, gallery_df_state],
|
| 690 |
+
)
|
| 691 |
+
category.change(
|
| 692 |
+
fn=update_assets,
|
| 693 |
+
inputs=[primary, secondary, category],
|
| 694 |
+
outputs=[gallery, gallery, gallery_df_state],
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
gallery.select(
|
| 698 |
+
fn=show_asset_from_gallery,
|
| 699 |
+
inputs=[primary, secondary, category, search_box, gallery_df_state],
|
| 700 |
+
outputs=[
|
| 701 |
+
(visual_path_state := gr.State()),
|
| 702 |
+
(collision_path_state := gr.State()),
|
| 703 |
+
desc_box,
|
| 704 |
+
asset_folder,
|
| 705 |
+
urdf_file,
|
| 706 |
+
est_type_text,
|
| 707 |
+
est_height_text,
|
| 708 |
+
est_mass_text,
|
| 709 |
+
est_mu_text,
|
| 710 |
+
],
|
| 711 |
+
).then(
|
| 712 |
+
fn=render_meshes,
|
| 713 |
+
inputs=[visual_path_state, collision_path_state, switch_viewer_state],
|
| 714 |
+
outputs=[
|
| 715 |
+
viewer,
|
| 716 |
+
collision_viewer_a,
|
| 717 |
+
collision_viewer_b,
|
| 718 |
+
switch_viewer_state,
|
| 719 |
+
],
|
| 720 |
+
).success(
|
| 721 |
+
lambda: (gr.Button(interactive=True), gr.Button(interactive=False)),
|
| 722 |
+
outputs=[extract_btn, download_btn],
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
extract_btn.click(
|
| 726 |
+
fn=create_asset_zip, inputs=[asset_folder], outputs=[download_btn]
|
| 727 |
+
).success(fn=lambda: gr.update(interactive=True), outputs=download_btn)
|
| 728 |
+
|
| 729 |
+
demo.load(start_session)
|
| 730 |
+
demo.unload(end_session)
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
if __name__ == "__main__":
|
| 734 |
+
demo.launch()
|
app_style.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from gradio.themes import Soft
|
| 2 |
+
from gradio.themes.utils.colors import gray, neutral, slate, stone, teal, zinc
|
| 3 |
+
|
| 4 |
+
lighting_css = """
|
| 5 |
+
<style>
|
| 6 |
+
#lighter_mesh canvas {
|
| 7 |
+
filter: brightness(1.9) !important;
|
| 8 |
+
}
|
| 9 |
+
</style>
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
image_css = """
|
| 13 |
+
<style>
|
| 14 |
+
.image_fit .image-frame {
|
| 15 |
+
object-fit: contain !important;
|
| 16 |
+
height: 100% !important;
|
| 17 |
+
}
|
| 18 |
+
</style>
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
custom_theme = Soft(
|
| 22 |
+
primary_hue=stone,
|
| 23 |
+
secondary_hue=gray,
|
| 24 |
+
radius_size="md",
|
| 25 |
+
text_size="sm",
|
| 26 |
+
spacing_size="sm",
|
| 27 |
+
)
|
embodied_gen/utils/gpt_clients.py
ADDED
|
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Project EmbodiedGen
|
| 2 |
+
#
|
| 3 |
+
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 14 |
+
# implied. See the License for the specific language governing
|
| 15 |
+
# permissions and limitations under the License.
|
| 16 |
+
|
| 17 |
+
import math
|
| 18 |
+
import base64
|
| 19 |
+
import logging
|
| 20 |
+
import os
|
| 21 |
+
from io import BytesIO
|
| 22 |
+
from typing import Optional
|
| 23 |
+
|
| 24 |
+
import yaml
|
| 25 |
+
from openai import AzureOpenAI, OpenAI # pip install openai
|
| 26 |
+
from PIL import Image
|
| 27 |
+
from tenacity import (
|
| 28 |
+
retry,
|
| 29 |
+
stop_after_attempt,
|
| 30 |
+
stop_after_delay,
|
| 31 |
+
wait_random_exponential,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
| 35 |
+
logging.basicConfig(level=logging.WARNING)
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
__all__ = [
|
| 40 |
+
"GPTclient",
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
CONFIG_FILE = "embodied_gen/utils/gpt_config.yaml"
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def combine_images_to_grid(
|
| 47 |
+
images: list[str | Image.Image],
|
| 48 |
+
cat_row_col: tuple[int, int] = None,
|
| 49 |
+
target_wh: tuple[int, int] = (512, 512),
|
| 50 |
+
image_mode: str = "RGB",
|
| 51 |
+
) -> list[Image.Image]:
|
| 52 |
+
n_images = len(images)
|
| 53 |
+
if n_images == 1:
|
| 54 |
+
return images
|
| 55 |
+
|
| 56 |
+
if cat_row_col is None:
|
| 57 |
+
n_col = math.ceil(math.sqrt(n_images))
|
| 58 |
+
n_row = math.ceil(n_images / n_col)
|
| 59 |
+
else:
|
| 60 |
+
n_row, n_col = cat_row_col
|
| 61 |
+
|
| 62 |
+
images = [
|
| 63 |
+
Image.open(p).convert(image_mode) if isinstance(p, str) else p
|
| 64 |
+
for p in images
|
| 65 |
+
]
|
| 66 |
+
images = [img.resize(target_wh) for img in images]
|
| 67 |
+
|
| 68 |
+
grid_w, grid_h = n_col * target_wh[0], n_row * target_wh[1]
|
| 69 |
+
grid = Image.new(image_mode, (grid_w, grid_h), (0, 0, 0))
|
| 70 |
+
|
| 71 |
+
for idx, img in enumerate(images):
|
| 72 |
+
row, col = divmod(idx, n_col)
|
| 73 |
+
grid.paste(img, (col * target_wh[0], row * target_wh[1]))
|
| 74 |
+
|
| 75 |
+
return [grid]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class GPTclient:
|
| 79 |
+
"""A client to interact with the GPT model via OpenAI or Azure API."""
|
| 80 |
+
|
| 81 |
+
def __init__(
|
| 82 |
+
self,
|
| 83 |
+
endpoint: str,
|
| 84 |
+
api_key: str,
|
| 85 |
+
model_name: str = "yfb-gpt-4o",
|
| 86 |
+
api_version: str = None,
|
| 87 |
+
check_connection: bool = True,
|
| 88 |
+
verbose: bool = False,
|
| 89 |
+
):
|
| 90 |
+
if api_version is not None:
|
| 91 |
+
self.client = AzureOpenAI(
|
| 92 |
+
azure_endpoint=endpoint,
|
| 93 |
+
api_key=api_key,
|
| 94 |
+
api_version=api_version,
|
| 95 |
+
)
|
| 96 |
+
else:
|
| 97 |
+
self.client = OpenAI(
|
| 98 |
+
base_url=endpoint,
|
| 99 |
+
api_key=api_key,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
self.endpoint = endpoint
|
| 103 |
+
self.model_name = model_name
|
| 104 |
+
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
|
| 105 |
+
self.verbose = verbose
|
| 106 |
+
if check_connection:
|
| 107 |
+
self.check_connection()
|
| 108 |
+
|
| 109 |
+
logger.info(f"Using GPT model: {self.model_name}.")
|
| 110 |
+
|
| 111 |
+
@retry(
|
| 112 |
+
wait=wait_random_exponential(min=1, max=20),
|
| 113 |
+
stop=(stop_after_attempt(10) | stop_after_delay(30)),
|
| 114 |
+
)
|
| 115 |
+
def completion_with_backoff(self, **kwargs):
|
| 116 |
+
return self.client.chat.completions.create(**kwargs)
|
| 117 |
+
|
| 118 |
+
def query(
|
| 119 |
+
self,
|
| 120 |
+
text_prompt: str,
|
| 121 |
+
image_base64: Optional[list[str | Image.Image]] = None,
|
| 122 |
+
system_role: Optional[str] = None,
|
| 123 |
+
params: Optional[dict] = None,
|
| 124 |
+
) -> Optional[str]:
|
| 125 |
+
"""Queries the GPT model with a text and optional image prompts.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
text_prompt (str): The main text input that the model responds to.
|
| 129 |
+
image_base64 (Optional[List[str]]): A list of image base64 strings
|
| 130 |
+
or local image paths or PIL.Image to accompany the text prompt.
|
| 131 |
+
system_role (Optional[str]): Optional system-level instructions
|
| 132 |
+
that specify the behavior of the assistant.
|
| 133 |
+
params (Optional[dict]): Additional parameters for GPT setting.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Optional[str]: The response content generated by the model based on
|
| 137 |
+
the prompt. Returns `None` if an error occurs.
|
| 138 |
+
"""
|
| 139 |
+
if system_role is None:
|
| 140 |
+
system_role = "You are a highly knowledgeable assistant specializing in physics, engineering, and object properties." # noqa
|
| 141 |
+
|
| 142 |
+
content_user = [
|
| 143 |
+
{
|
| 144 |
+
"type": "text",
|
| 145 |
+
"text": text_prompt,
|
| 146 |
+
},
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
# Process images if provided
|
| 150 |
+
if image_base64 is not None:
|
| 151 |
+
if not isinstance(image_base64, list):
|
| 152 |
+
image_base64 = [image_base64]
|
| 153 |
+
# Hardcode tmp because of the openrouter can't input multi images.
|
| 154 |
+
if "openrouter" in self.endpoint:
|
| 155 |
+
image_base64 = combine_images_to_grid(image_base64)
|
| 156 |
+
for img in image_base64:
|
| 157 |
+
if isinstance(img, Image.Image):
|
| 158 |
+
buffer = BytesIO()
|
| 159 |
+
img.save(buffer, format=img.format or "PNG")
|
| 160 |
+
buffer.seek(0)
|
| 161 |
+
image_binary = buffer.read()
|
| 162 |
+
img = base64.b64encode(image_binary).decode("utf-8")
|
| 163 |
+
elif (
|
| 164 |
+
len(os.path.splitext(img)) > 1
|
| 165 |
+
and os.path.splitext(img)[-1].lower() in self.image_formats
|
| 166 |
+
):
|
| 167 |
+
if not os.path.exists(img):
|
| 168 |
+
raise FileNotFoundError(f"Image file not found: {img}")
|
| 169 |
+
with open(img, "rb") as f:
|
| 170 |
+
img = base64.b64encode(f.read()).decode("utf-8")
|
| 171 |
+
|
| 172 |
+
content_user.append(
|
| 173 |
+
{
|
| 174 |
+
"type": "image_url",
|
| 175 |
+
"image_url": {"url": f"data:image/png;base64,{img}"},
|
| 176 |
+
}
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
payload = {
|
| 180 |
+
"messages": [
|
| 181 |
+
{"role": "system", "content": system_role},
|
| 182 |
+
{"role": "user", "content": content_user},
|
| 183 |
+
],
|
| 184 |
+
"temperature": 0.1,
|
| 185 |
+
"max_tokens": 500,
|
| 186 |
+
"top_p": 0.1,
|
| 187 |
+
"frequency_penalty": 0,
|
| 188 |
+
"presence_penalty": 0,
|
| 189 |
+
"stop": None,
|
| 190 |
+
"model": self.model_name,
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
if params:
|
| 194 |
+
payload.update(params)
|
| 195 |
+
|
| 196 |
+
response = None
|
| 197 |
+
try:
|
| 198 |
+
response = self.completion_with_backoff(**payload)
|
| 199 |
+
response = response.choices[0].message.content
|
| 200 |
+
except Exception as e:
|
| 201 |
+
logger.error(f"Error GPTclint {self.endpoint} API call: {e}")
|
| 202 |
+
response = None
|
| 203 |
+
|
| 204 |
+
if self.verbose:
|
| 205 |
+
logger.info(f"Prompt: {text_prompt}")
|
| 206 |
+
logger.info(f"Response: {response}")
|
| 207 |
+
|
| 208 |
+
return response
|
| 209 |
+
|
| 210 |
+
def check_connection(self) -> None:
|
| 211 |
+
"""Check whether the GPT API connection is working."""
|
| 212 |
+
try:
|
| 213 |
+
response = self.completion_with_backoff(
|
| 214 |
+
messages=[
|
| 215 |
+
{"role": "system", "content": "You are a test system."},
|
| 216 |
+
{"role": "user", "content": "Hello"},
|
| 217 |
+
],
|
| 218 |
+
model=self.model_name,
|
| 219 |
+
temperature=0,
|
| 220 |
+
max_tokens=100,
|
| 221 |
+
)
|
| 222 |
+
content = response.choices[0].message.content
|
| 223 |
+
logger.info(f"Connection check success.")
|
| 224 |
+
except Exception as e:
|
| 225 |
+
raise ConnectionError(
|
| 226 |
+
f"Failed to connect to GPT API at {self.endpoint}, "
|
| 227 |
+
f"please check setting in `{CONFIG_FILE}` and `README`."
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
with open(CONFIG_FILE, "r") as f:
|
| 232 |
+
config = yaml.safe_load(f)
|
| 233 |
+
|
| 234 |
+
agent_type = config["agent_type"]
|
| 235 |
+
agent_config = config.get(agent_type, {})
|
| 236 |
+
|
| 237 |
+
# Prefer environment variables, fallback to YAML config
|
| 238 |
+
endpoint = os.environ.get("ENDPOINT", agent_config.get("endpoint"))
|
| 239 |
+
api_key = os.environ.get("API_KEY", agent_config.get("api_key"))
|
| 240 |
+
api_version = os.environ.get("API_VERSION", agent_config.get("api_version"))
|
| 241 |
+
model_name = os.environ.get("MODEL_NAME", agent_config.get("model_name"))
|
| 242 |
+
|
| 243 |
+
GPT_CLIENT = GPTclient(
|
| 244 |
+
endpoint=endpoint,
|
| 245 |
+
api_key=api_key,
|
| 246 |
+
api_version=api_version,
|
| 247 |
+
model_name=model_name,
|
| 248 |
+
check_connection=False,
|
| 249 |
+
)
|
embodied_gen/utils/gpt_config.yaml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# config.yaml
|
| 2 |
+
agent_type: "qwen2.5-vl" # gpt-4o or qwen2.5-vl
|
| 3 |
+
|
| 4 |
+
gpt-4o:
|
| 5 |
+
endpoint: https://xxx.openai.azure.com
|
| 6 |
+
api_key: xxx
|
| 7 |
+
api_version: 2025-xx-xx
|
| 8 |
+
model_name: yfb-gpt-4o
|
| 9 |
+
|
| 10 |
+
qwen2.5-vl:
|
| 11 |
+
endpoint: https://openrouter.ai/api/v1
|
| 12 |
+
api_key: sk-or-v1-xxx
|
| 13 |
+
api_version: null
|
| 14 |
+
model_name: qwen/qwen2.5-vl-72b-instruct:free
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio==5.12.0
|
| 2 |
+
pandas
|
| 3 |
+
openai==1.58.1
|
| 4 |
+
tenacity
|