Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| BitsAndBytesConfig, | |
| HfArgumentParser, | |
| TrainingArguments, | |
| pipeline, | |
| logging, | |
| ) | |
| from peft import LoraConfig, PeftModel | |
| from trl import SFTTrainer | |
| # The model that you want to train from the Hugging Face hub | |
| model_name = "meta-llama/Llama-2-7b-chat-hf" | |
| # The instruction dataset to use | |
| dataset_name = "mlabonne/guanaco-llama2-1k" | |
| # Fine-tuned model name | |
| new_model = "llama-2-7b-miniguanaco" | |
| ################################################################################ | |
| # QLoRA parameters | |
| ################################################################################ | |
| # LoRA attention dimension | |
| lora_r = 64 | |
| # Alpha parameter for LoRA scaling | |
| lora_alpha = 16 | |
| # Dropout probability for LoRA layers | |
| lora_dropout = 0.1 | |
| ################################################################################ | |
| # bitsandbytes parameters | |
| ################################################################################ | |
| # Activate 4-bit precision base model loading | |
| use_4bit = True | |
| # Compute dtype for 4-bit base models | |
| bnb_4bit_compute_dtype = "float16" | |
| # Quantization type (fp4 or nf4) | |
| bnb_4bit_quant_type = "nf4" | |
| # Activate nested quantization for 4-bit base models (double quantization) | |
| use_nested_quant = False | |
| ################################################################################ | |
| # TrainingArguments parameters | |
| ################################################################################ | |
| # Output directory where the model predictions and checkpoints will be stored | |
| output_dir = "./results" | |
| # Number of training epochs | |
| num_train_epochs = 1 | |
| # Enable fp16/bf16 training (set bf16 to True with an A100) | |
| fp16 = False | |
| bf16 = False | |
| # Batch size per GPU for training | |
| per_device_train_batch_size = 4 | |
| # Batch size per GPU for evaluation | |
| per_device_eval_batch_size = 4 | |
| # Number of update steps to accumulate the gradients for | |
| gradient_accumulation_steps = 1 | |
| # Enable gradient checkpointing | |
| gradient_checkpointing = True | |
| # Maximum gradient normal (gradient clipping) | |
| max_grad_norm = 0.3 | |
| # Initial learning rate (AdamW optimizer) | |
| learning_rate = 2e-4 | |
| # Weight decay to apply to all layers except bias/LayerNorm weights | |
| weight_decay = 0.001 | |
| # Optimizer to use | |
| optim = "paged_adamw_32bit" | |
| # Learning rate schedule (constant a bit better than cosine) | |
| lr_scheduler_type = "constant" | |
| # Number of training steps (overrides num_train_epochs) | |
| max_steps = -1 | |
| # Ratio of steps for a linear warmup (from 0 to learning rate) | |
| warmup_ratio = 0.03 | |
| # Group sequences into batches with same length | |
| # Saves memory and speeds up training considerably | |
| group_by_length = True | |
| # Save checkpoint every X updates steps | |
| save_steps = 25 | |
| # Log every X updates steps | |
| logging_steps = 25 | |
| ################################################################################ | |
| # SFT parameters | |
| ################################################################################ | |
| # Maximum sequence length to use | |
| max_seq_length = None | |
| # Pack multiple short examples in the same input sequence to increase efficiency | |
| packing = False | |
| # Load the entire model on the GPU 0 | |
| device_map = {"": 0} | |
| # Load dataset (you can process it here) | |
| dataset = load_dataset(dataset_name, split="train") | |
| # Load tokenizer and model with QLoRA configuration | |
| compute_dtype = getattr(torch, bnb_4bit_compute_dtype) | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=use_4bit, | |
| bnb_4bit_quant_type=bnb_4bit_quant_type, | |
| bnb_4bit_compute_dtype=compute_dtype, | |
| bnb_4bit_use_double_quant=use_nested_quant, | |
| ) | |
| # Check GPU compatibility with bfloat16 | |
| if compute_dtype == torch.float16 and use_4bit: | |
| major, _ = torch.cuda.get_device_capability() | |
| if major >= 8: | |
| print("=" * 80) | |
| print("Your GPU supports bfloat16: accelerate training with bf16=True") | |
| print("=" * 80) | |
| # Load base model | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| quantization_config=bnb_config, | |
| device_map=device_map | |
| ) | |
| model.config.use_cache = False | |
| model.config.pretraining_tp = 1 | |
| # Load LLaMA tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training | |
| # Load LoRA configuration | |
| peft_config = LoraConfig( | |
| lora_alpha=lora_alpha, | |
| lora_dropout=lora_dropout, | |
| r=lora_r, | |
| bias="none", | |
| task_type="CAUSAL_LM", | |
| ) | |
| # Set training parameters | |
| training_arguments = TrainingArguments( | |
| output_dir=output_dir, | |
| num_train_epochs=num_train_epochs, | |
| per_device_train_batch_size=per_device_train_batch_size, | |
| gradient_accumulation_steps=gradient_accumulation_steps, | |
| optim=optim, | |
| save_steps=save_steps, | |
| logging_steps=logging_steps, | |
| learning_rate=learning_rate, | |
| weight_decay=weight_decay, | |
| fp16=fp16, | |
| bf16=bf16, | |
| max_grad_norm=max_grad_norm, | |
| max_steps=max_steps, | |
| warmup_ratio=warmup_ratio, | |
| group_by_length=group_by_length, | |
| lr_scheduler_type=lr_scheduler_type, | |
| report_to="tensorboard" | |
| ) | |
| # Set supervised fine-tuning parameters | |
| trainer = SFTTrainer( | |
| model=model, | |
| train_dataset=dataset, | |
| peft_config=peft_config, | |
| dataset_text_field="text", | |
| max_seq_length=max_seq_length, | |
| tokenizer=tokenizer, | |
| args=training_arguments, | |
| packing=packing, | |
| ) | |
| # Train model | |
| trainer.train() | |
| # Save trained model | |
| trainer.model.save_pretrained(new_model) | |
| # Ignore warnings | |
| logging.set_verbosity(logging.CRITICAL) | |
| # Run text generation pipeline with our next model | |
| prompt = "What is a large language model?" | |
| pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200) | |
| result = pipe(f"<s>[INST] {prompt} [/INST]") | |
| print(result[0]['generated_text']) | |
| # Reload model in FP16 and merge it with LoRA weights | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| low_cpu_mem_usage=True, | |
| return_dict=True, | |
| torch_dtype=torch.float16, | |
| device_map=device_map, | |
| ) | |
| model = PeftModel.from_pretrained(base_model, new_model) | |
| model = model.merge_and_unload() | |
| # Reload tokenizer to save it | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = "right" | |
| kwargs={ | |
| } | |
| model.push_to_hub(**kwargs) | |
| tokenizer.push_to_hub(new_model, use_temp_dir=False) | |
| def do_nothing(text): | |
| return text | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=do_nothing, | |
| inputs="text", | |
| outputs="text", | |
| layout="vertical", | |
| title="LLAMA-2-7B Chatbot", | |
| description="Enter a prompt and get a chatbot response.", | |
| examples=[["Tell me a joke."]], | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch() |