EspeMoe commited on
Commit
e64c5ed
·
verified ·
1 Parent(s): 7968a3b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ import os # Import os module to handle file paths
4
+
5
+ # Load the transcription model
6
+ # Using a smaller model that might fit in memory, or consider running on CPU if memory is still an issue
7
+ # For demonstration, let's try 'openai/whisper-small'
8
+ print("🎤 Loading transcription pipeline...")
9
+ try:
10
+ transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-small", device="cuda:0") # Explicitly use GPU if available
11
+ except Exception as e:
12
+ print(f"Could not load model on GPU: {e}. Trying on CPU.")
13
+ transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-small", device="cpu") # Fallback to CPU
14
+
15
+
16
+ def transcribe_audio(audio_file_path):
17
+ """
18
+ Transcribes the audio file using the loaded pipeline.
19
+ """
20
+ if audio_file_path is None:
21
+ return "Please upload an audio file."
22
+
23
+ # Ensure the file path is accessible
24
+ if not os.path.exists(audio_file_path):
25
+ return f"Error: Audio file not found at {audio_file_path}"
26
+
27
+ print(f" transcribe the audio file: {audio_file_path}")
28
+ # Run transcription on the audio file with chunking
29
+ # Adjust chunk_length_s and return_timestamps as needed for your audio
30
+ try:
31
+ transcription_result = transcriber(audio_file_path, chunk_length_s=30, return_timestamps=True)
32
+ return transcription_result["text"]
33
+ except Exception as e:
34
+ return f"Error during transcription: {e}"
35
+
36
+
37
+ # Create the Gradio interface
38
+ print("🚀 Creating Gradio interface for Transcription...")
39
+ iface = gr.Interface(
40
+ fn=transcribe_audio,
41
+ inputs=gr.Audio(type="filepath", label="Upload Audio File"), # Use type="filepath" to get the path to the temporary file
42
+ outputs=gr.Textbox(label="Transcription"),
43
+ title="Audio Transcription Pipeline",
44
+ description="Upload an audio file (e.g., MP3, WAV) to get a transcription."
45
+ )
46
+
47
+ # Launch the interface
48
+ print("✨ Launching Gradio interface...")
49
+ # Set share=True to get a public link for sharing (optional)
50
+ iface.launch(debug=True, share=True)
51
+ print("\n✅ Gradio interface launched.")