File size: 8,703 Bytes
66dbebd
 
ae20ff2
7efa4f1
66dbebd
 
ae20ff2
 
66dbebd
 
 
 
 
 
ae20ff2
66dbebd
 
 
 
 
ae20ff2
 
66dbebd
f809b88
 
7efa4f1
 
ae20ff2
 
 
 
 
 
 
 
 
 
 
 
f809b88
 
 
 
 
ae20ff2
 
 
 
f809b88
 
 
 
ae20ff2
 
 
 
 
 
 
 
 
 
 
 
 
f809b88
 
 
 
 
ae20ff2
 
 
 
 
f809b88
 
 
 
ae20ff2
 
 
f809b88
 
 
 
 
ae20ff2
 
 
 
f809b88
 
 
 
ae20ff2
7efa4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
f809b88
 
 
7efa4f1
ae20ff2
 
 
 
 
7efa4f1
ae20ff2
 
 
7efa4f1
 
 
 
 
 
 
 
 
ae20ff2
66dbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efa4f1
66dbebd
 
 
2bb821d
 
 
 
 
 
 
 
 
 
 
 
7efa4f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dbebd
 
2bb821d
 
 
f809b88
 
 
66dbebd
7efa4f1
66dbebd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# orchestrator_engine.py
import uuid
import logging
import time
from datetime import datetime

logger = logging.getLogger(__name__)

class MVPOrchestrator:
    def __init__(self, llm_router, context_manager, agents):
        self.llm_router = llm_router
        self.context_manager = context_manager
        self.agents = agents
        self.execution_trace = []
        logger.info("MVPOrchestrator initialized")
        
    async def process_request(self, session_id: str, user_input: str) -> dict:
        """
        Main orchestration flow with academic differentiation
        """
        logger.info(f"Processing request for session {session_id}")
        logger.info(f"User input: {user_input[:100]}")
        
        # Clear previous trace for new request
        self.execution_trace = []
        start_time = time.time()
        
        try:
            # Step 1: Generate unique interaction ID
            interaction_id = self._generate_interaction_id(session_id)
            logger.info(f"Generated interaction ID: {interaction_id}")
            
            # Step 2: Context management
            logger.info("Step 2: Managing context...")
            context = await self.context_manager.manage_context(session_id, user_input)
            logger.info(f"Context retrieved: {len(context.get('interactions', []))} interactions")
            
            # Step 3: Intent recognition with CoT
            logger.info("Step 3: Recognizing intent...")
            self.execution_trace.append({
                "step": "intent_recognition",
                "agent": "intent_recognition",
                "status": "executing"
            })
            intent_result = await self.agents['intent_recognition'].execute(
                user_input=user_input,
                context=context
            )
            self.execution_trace[-1].update({
                "status": "completed",
                "result": {"primary_intent": intent_result.get('primary_intent', 'unknown')}
            })
            logger.info(f"Intent detected: {intent_result.get('primary_intent', 'unknown')}")
            
            # Step 4: Agent execution planning
            logger.info("Step 4: Creating execution plan...")
            execution_plan = await self._create_execution_plan(intent_result, context)
            
            # Step 5: Parallel agent execution
            logger.info("Step 5: Executing agents...")
            agent_results = await self._execute_agents(execution_plan, user_input, context)
            logger.info(f"Agent execution complete: {len(agent_results)} results")
            
            # Step 6: Response synthesis
            logger.info("Step 6: Synthesizing response...")
            self.execution_trace.append({
                "step": "response_synthesis",
                "agent": "response_synthesis",
                "status": "executing"
            })
            final_response = await self.agents['response_synthesis'].execute(
                agent_outputs=agent_results,
                user_input=user_input,
                context=context
            )
            self.execution_trace[-1].update({
                "status": "completed",
                "result": {"synthesis_method": final_response.get('synthesis_method', 'unknown')}
            })
            
            # Step 7: Safety and bias check
            logger.info("Step 7: Safety check...")
            self.execution_trace.append({
                "step": "safety_check",
                "agent": "safety_check",
                "status": "executing"
            })
            safety_checked = await self.agents['safety_check'].execute(
                response=final_response,
                context=context
            )
            self.execution_trace[-1].update({
                "status": "completed",
                "result": {"warnings": safety_checked.get('warnings', [])}
            })
            
            processing_time = time.time() - start_time
            
            result = self._format_final_output(safety_checked, interaction_id, {
                'intent': intent_result.get('primary_intent', 'unknown'),
                'execution_plan': execution_plan,
                'processing_steps': [
                    'Context management',
                    'Intent recognition',
                    'Execution planning',
                    'Agent execution',
                    'Response synthesis',
                    'Safety check'
                ],
                'processing_time': processing_time,
                'agents_used': list(self.agents.keys()),
                'intent_result': intent_result,
                'synthesis_result': final_response
            })
            logger.info(f"Request processing complete. Response length: {len(str(result.get('response', '')))}")
            return result
            
        except Exception as e:
            logger.error(f"Error in process_request: {e}", exc_info=True)
            processing_time = time.time() - start_time
            return {
                "response": f"Error processing request: {str(e)}",
                "error": str(e),
                "interaction_id": str(uuid.uuid4())[:8],
                "agent_trace": [],
                "timestamp": datetime.now().isoformat(),
                "metadata": {
                    "agents_used": [],
                    "processing_time": processing_time,
                    "token_count": 0,
                    "warnings": []
                }
            }
    
    def _generate_interaction_id(self, session_id: str) -> str:
        """
        Generate unique interaction identifier
        """
        timestamp = datetime.now().isoformat()
        unique_id = str(uuid.uuid4())[:8]
        return f"{session_id}_{unique_id}_{int(datetime.now().timestamp())}"
    
    async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
        """
        Create execution plan based on intent recognition
        """
        # TODO: Implement agent selection and sequencing logic
        return {
            "agents_to_execute": [],
            "execution_order": "parallel",
            "priority": "normal"
        }
    
    async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
        """
        Execute agents in parallel or sequential order based on plan
        """
        # TODO: Implement parallel/sequential agent execution
        return {}
    
    def _format_final_output(self, response: dict, interaction_id: str, additional_metadata: dict = None) -> dict:
        """
        Format final output with tracing and metadata
        """
        # Extract the actual response text from various possible locations
        response_text = (
            response.get("final_response") or 
            response.get("safety_checked_response") or 
            response.get("original_response") or 
            response.get("response") or 
            str(response.get("result", ""))
        )
        
        if not response_text:
            response_text = "I apologize, but I'm having trouble generating a response right now. Please try again."
        
        # Extract warnings from safety check result
        warnings = []
        if "warnings" in response:
            warnings = response["warnings"] if isinstance(response["warnings"], list) else []
        
        # Build metadata dict
        metadata = {
            "agents_used": response.get("agents_used", []),
            "processing_time": response.get("processing_time", 0),
            "token_count": response.get("token_count", 0),
            "warnings": warnings
        }
        
        # Merge in any additional metadata
        if additional_metadata:
            metadata.update(additional_metadata)
        
        return {
            "interaction_id": interaction_id,
            "response": response_text,
            "final_response": response_text,  # Also provide as final_response for compatibility
            "confidence_score": response.get("confidence_score", 0.7),
            "agent_trace": self.execution_trace if self.execution_trace else [
                {"step": "complete", "agent": "orchestrator", "status": "completed"}
            ],
            "timestamp": datetime.now().isoformat(),
            "metadata": metadata
        }
    
    def get_execution_trace(self) -> list:
        """
        Return execution trace for debugging and analysis
        """
        return self.execution_trace
    
    def clear_execution_trace(self):
        """
        Clear the execution trace
        """
        self.execution_trace = []