File size: 23,396 Bytes
80a97c8
 
 
 
29048d9
80a97c8
 
 
 
 
29048d9
80a97c8
 
 
 
 
 
 
 
29048d9
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
29048d9
80a97c8
 
 
 
 
 
29048d9
 
 
 
 
 
 
 
 
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29048d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a97c8
 
 
 
 
 
 
29048d9
80a97c8
29048d9
 
 
 
80a97c8
 
29048d9
 
80a97c8
 
29048d9
 
80a97c8
29048d9
 
 
 
 
80a97c8
29048d9
 
 
80a97c8
29048d9
80a97c8
 
 
29048d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a97c8
 
 
29048d9
80a97c8
29048d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80a97c8
 
29048d9
 
 
 
80a97c8
 
 
 
 
29048d9
80a97c8
 
 
29048d9
80a97c8
29048d9
80a97c8
 
 
 
 
 
 
 
 
29048d9
80a97c8
 
 
 
 
 
 
 
 
 
29048d9
 
 
 
 
 
 
 
80a97c8
29048d9
80a97c8
29048d9
 
 
 
 
80a97c8
 
29048d9
 
 
 
 
 
 
80a97c8
 
 
29048d9
 
80a97c8
 
29048d9
 
80a97c8
 
 
 
 
 
 
29048d9
 
 
80a97c8
 
 
 
 
29048d9
 
80a97c8
29048d9
 
80a97c8
 
 
29048d9
80a97c8
 
 
29048d9
 
80a97c8
29048d9
 
80a97c8
 
29048d9
80a97c8
 
 
29048d9
80a97c8
29048d9
80a97c8
 
29048d9
80a97c8
 
29048d9
80a97c8
 
 
29048d9
 
 
 
 
 
 
 
80a97c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
# context_manager.py
import sqlite3
import json
import logging
import uuid
from datetime import datetime, timedelta

logger = logging.getLogger(__name__)

class EfficientContextManager:
    def __init__(self, llm_router=None):
        self.session_cache = {}  # In-memory for active sessions
        self.cache_config = {
            "max_session_size": 10,  # MB per session
            "ttl": 3600,  # 1 hour
            "compression": "gzip",
            "eviction_policy": "LRU"
        }
        self.db_path = "sessions.db"
        self.llm_router = llm_router  # For generating context summaries
        logger.info(f"Initializing ContextManager with DB path: {self.db_path}")
        self._init_database()
    
    def _init_database(self):
        """Initialize database and create tables"""
        try:
            logger.info("Initializing database...")
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            # Create sessions table if not exists
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS sessions (
                    session_id TEXT PRIMARY KEY,
                    user_id TEXT DEFAULT 'Test_Any',
                    created_at TIMESTAMP,
                    last_activity TIMESTAMP,
                    context_data TEXT,
                    user_metadata TEXT
                )
            """)
            
            # Add user_id column to existing sessions table if it doesn't exist
            try:
                cursor.execute("ALTER TABLE sessions ADD COLUMN user_id TEXT DEFAULT 'Test_Any'")
                logger.info("βœ“ Added user_id column to sessions table")
            except sqlite3.OperationalError:
                # Column already exists
                pass
            
            logger.info("βœ“ Sessions table ready")
            
            # Create interactions table
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS interactions (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    session_id TEXT REFERENCES sessions(session_id),
                    user_input TEXT,
                    context_snapshot TEXT,
                    created_at TIMESTAMP,
                    FOREIGN KEY(session_id) REFERENCES sessions(session_id)
                )
            """)
            logger.info("βœ“ Interactions table ready")
            
            # Create user_contexts table (persistent user persona summaries)
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS user_contexts (
                    user_id TEXT PRIMARY KEY,
                    persona_summary TEXT,
                    updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            logger.info("βœ“ User contexts table ready")
            
            # Create session_contexts table (session summaries)
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS session_contexts (
                    session_id TEXT PRIMARY KEY,
                    user_id TEXT,
                    session_summary TEXT,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    FOREIGN KEY(session_id) REFERENCES sessions(session_id),
                    FOREIGN KEY(user_id) REFERENCES user_contexts(user_id)
                )
            """)
            logger.info("βœ“ Session contexts table ready")
            
            # Create interaction_contexts table (individual interaction summaries)
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS interaction_contexts (
                    interaction_id TEXT PRIMARY KEY,
                    session_id TEXT,
                    user_input TEXT,
                    system_response TEXT,
                    interaction_summary TEXT,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    FOREIGN KEY(session_id) REFERENCES sessions(session_id)
                )
            """)
            logger.info("βœ“ Interaction contexts table ready")
            
            conn.commit()
            conn.close()
            logger.info("Database initialization complete")
            
        except Exception as e:
            logger.error(f"Database initialization error: {e}", exc_info=True)
    
    async def manage_context(self, session_id: str, user_input: str, user_id: str = "Test_Any") -> dict:
        """
        Efficient context management with user-based context system
        STEP 1: Fetch User Context (if available)
        STEP 2: Get Previous Interaction Contexts
        STEP 3: Combine for workflow use
        """
        # Level 1: In-memory session cache
        cache_key = f"{session_id}_{user_id}"
        context = self._get_from_memory_cache(cache_key)
        
        if not context:
            # Level 2: Database retrieval with user context
            context = await self._retrieve_from_db(session_id, user_input, user_id)
            
            # STEP 1: Fetch or generate User Context at session start (if first interaction in session)
            if not context.get("user_context_loaded"):
                user_context = await self.get_user_context(user_id)
                context["user_context"] = user_context
                context["user_context_loaded"] = True
            
            # Cache warming
            self._warm_memory_cache(cache_key, context)
        
        # Update context with new interaction
        updated_context = self._update_context(context, user_input, user_id=user_id)
        
        return self._optimize_context(updated_context)
    
    async def get_user_context(self, user_id: str) -> str:
        """
        STEP 1: Fetch or generate User Context (500-token persona summary)
        Available for all interactions except first time per user
        """
        try:
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            # Check if user context exists
            cursor.execute("""
                SELECT persona_summary FROM user_contexts WHERE user_id = ?
            """, (user_id,))
            
            row = cursor.fetchone()
            if row and row[0]:
                # Existing user context found
                conn.close()
                logger.info(f"βœ“ User context loaded for {user_id}")
                return row[0]
            
            # Generate new user context from all historical data
            logger.info(f"Generating new user context for {user_id}")
            
            # Fetch all historical Session and Interaction contexts for this user
            all_session_summaries = []
            all_interaction_summaries = []
            
            # Get all session contexts
            cursor.execute("""
                SELECT session_summary FROM session_contexts WHERE user_id = ?
                ORDER BY created_at DESC LIMIT 50
            """, (user_id,))
            for row in cursor.fetchall():
                if row[0]:
                    all_session_summaries.append(row[0])
            
            # Get all interaction contexts
            cursor.execute("""
                SELECT ic.interaction_summary 
                FROM interaction_contexts ic
                JOIN sessions s ON ic.session_id = s.session_id
                WHERE s.user_id = ?
                ORDER BY ic.created_at DESC LIMIT 100
            """, (user_id,))
            for row in cursor.fetchall():
                if row[0]:
                    all_interaction_summaries.append(row[0])
            
            conn.close()
            
            if not all_session_summaries and not all_interaction_summaries:
                # First time user - no context to generate
                logger.info(f"No historical data for {user_id} - first time user")
                return ""
            
            # Generate persona summary using LLM (500 tokens)
            historical_data = "\n\n".join(all_session_summaries + all_interaction_summaries[:20])
            
            if self.llm_router:
                prompt = f"""Generate a concise 500-token persona summary for user {user_id} based on their interaction history:

Historical Context:
{historical_data}

Create a persona summary that captures:
- Communication style and preferences
- Common topics and interests
- Interaction patterns
- Key information shared across sessions

Keep the summary concise and focused (approximately 500 tokens)."""
                
                try:
                    persona_summary = await self.llm_router.route_inference(
                        task_type="general_reasoning",
                        prompt=prompt,
                        max_tokens=500,
                        temperature=0.7
                    )
                    
                    if persona_summary and isinstance(persona_summary, str) and persona_summary.strip():
                        # Store in database
                        conn = sqlite3.connect(self.db_path)
                        cursor = conn.cursor()
                        cursor.execute("""
                            INSERT OR REPLACE INTO user_contexts (user_id, persona_summary, updated_at)
                            VALUES (?, ?, ?)
                        """, (user_id, persona_summary.strip(), datetime.now().isoformat()))
                        conn.commit()
                        conn.close()
                        
                        logger.info(f"βœ“ Generated and stored user context for {user_id}")
                        return persona_summary.strip()
                except Exception as e:
                    logger.error(f"Error generating user context: {e}", exc_info=True)
            
            # Fallback: Return empty if LLM fails
            logger.warning(f"Could not generate user context for {user_id} - using empty")
            return ""
            
        except Exception as e:
            logger.error(f"Error getting user context: {e}", exc_info=True)
            return ""
    
    async def generate_interaction_context(self, interaction_id: str, session_id: str, 
                                         user_input: str, system_response: str, 
                                         user_id: str = "Test_Any") -> str:
        """
        STEP 2: Generate Interaction Context (50-token summary)
        Called after each response
        """
        try:
            if not self.llm_router:
                return ""
            
            prompt = f"""Summarize this interaction in approximately 50 tokens:

User Input: {user_input[:200]}
System Response: {system_response[:300]}

Provide a brief summary capturing the key exchange."""
            
            try:
                summary = await self.llm_router.route_inference(
                    task_type="general_reasoning",
                    prompt=prompt,
                    max_tokens=50,
                    temperature=0.7
                )
                
                if summary and isinstance(summary, str) and summary.strip():
                    # Store in database
                    conn = sqlite3.connect(self.db_path)
                    cursor = conn.cursor()
                    cursor.execute("""
                        INSERT OR REPLACE INTO interaction_contexts 
                        (interaction_id, session_id, user_input, system_response, interaction_summary, created_at)
                        VALUES (?, ?, ?, ?, ?, ?)
                    """, (
                        interaction_id, 
                        session_id, 
                        user_input[:500], 
                        system_response[:1000],
                        summary.strip(),
                        datetime.now().isoformat()
                    ))
                    conn.commit()
                    conn.close()
                    
                    logger.info(f"βœ“ Generated interaction context for {interaction_id}")
                    return summary.strip()
            except Exception as e:
                logger.error(f"Error generating interaction context: {e}", exc_info=True)
            
            # Fallback on LLM failure
            return ""
            
        except Exception as e:
            logger.error(f"Error in generate_interaction_context: {e}", exc_info=True)
            return ""
    
    async def generate_session_context(self, session_id: str, user_id: str = "Test_Any") -> str:
        """
        FINAL STEP: Generate Session Context (100-token summary)
        Called at session end
        """
        try:
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            # Get all interaction contexts for this session
            cursor.execute("""
                SELECT interaction_summary FROM interaction_contexts 
                WHERE session_id = ?
                ORDER BY created_at ASC
            """, (session_id,))
            
            interaction_summaries = [row[0] for row in cursor.fetchall() if row[0]]
            conn.close()
            
            if not interaction_summaries:
                logger.info(f"No interactions to summarize for session {session_id}")
                return ""
            
            # Generate session summary using LLM (100 tokens)
            if self.llm_router:
                combined_context = "\n".join(interaction_summaries)
                
                prompt = f"""Summarize this session's interactions in approximately 100 tokens:

Interaction Summaries:
{combined_context}

Create a concise session summary capturing:
- Main topics discussed
- Key outcomes or information shared
- User's focus areas

Keep the summary concise (approximately 100 tokens)."""
                
                try:
                    session_summary = await self.llm_router.route_inference(
                        task_type="general_reasoning",
                        prompt=prompt,
                        max_tokens=100,
                        temperature=0.7
                    )
                    
                    if session_summary and isinstance(session_summary, str) and session_summary.strip():
                        # Store in database
                        conn = sqlite3.connect(self.db_path)
                        cursor = conn.cursor()
                        cursor.execute("""
                            INSERT OR REPLACE INTO session_contexts 
                            (session_id, user_id, session_summary, created_at)
                            VALUES (?, ?, ?, ?)
                        """, (session_id, user_id, session_summary.strip(), datetime.now().isoformat()))
                        conn.commit()
                        conn.close()
                        
                        logger.info(f"βœ“ Generated session context for {session_id}")
                        return session_summary.strip()
                except Exception as e:
                    logger.error(f"Error generating session context: {e}", exc_info=True)
            
            # Fallback on LLM failure
            return ""
            
        except Exception as e:
            logger.error(f"Error in generate_session_context: {e}", exc_info=True)
            return ""
    
    async def end_session(self, session_id: str, user_id: str = "Test_Any"):
        """
        FINAL STEP: Generate Session Context and clear cache
        """
        try:
            # Generate session context
            await self.generate_session_context(session_id, user_id)
            
            # Clear in-memory cache for this session
            cache_key = f"{session_id}_{user_id}"
            if cache_key in self.session_cache:
                del self.session_cache[cache_key]
                logger.info(f"βœ“ Cleared cache for session {session_id}")
            
        except Exception as e:
            logger.error(f"Error ending session: {e}", exc_info=True)
    
    def _optimize_context(self, context: dict) -> dict:
        """
        Optimize context for LLM consumption
        Format: [Interaction Context #N, #N-1, ...] + User Context
        """
        user_context = context.get("user_context", "")
        interaction_contexts = context.get("interaction_contexts", [])
        
        # Format interaction contexts as requested
        formatted_interactions = []
        for idx, ic in enumerate(interaction_contexts[:10]):  # Last 10 interactions
            formatted_interactions.append(f"[Interaction Context #{len(interaction_contexts) - idx}]\n{ic.get('summary', '')}")
        
        # Combine User Context + Interaction Contexts
        combined_context = ""
        if user_context:
            combined_context += f"[User Context]\n{user_context}\n\n"
        if formatted_interactions:
            combined_context += "\n\n".join(formatted_interactions)
        
        return {
            "session_id": context.get("session_id"),
            "user_id": context.get("user_id", "Test_Any"),
            "user_context": user_context,
            "interaction_contexts": interaction_contexts,
            "combined_context": combined_context,  # For direct use in prompts
            "preferences": context.get("preferences", {}),
            "active_tasks": context.get("active_tasks", []),
            "last_activity": context.get("last_activity")
        }
    
    def _get_from_memory_cache(self, cache_key: str) -> dict:
        """
        Retrieve context from in-memory session cache
        """
        return self.session_cache.get(cache_key)
    
    async def _retrieve_from_db(self, session_id: str, user_input: str, user_id: str = "Test_Any") -> dict:
        """
        Retrieve context from database with semantic search
        """
        try:
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            # Get session data
            cursor.execute("""
                SELECT context_data, user_metadata, last_activity, user_id
                FROM sessions 
                WHERE session_id = ?
            """, (session_id,))
            
            row = cursor.fetchone()
            
            if row:
                context_data = json.loads(row[0]) if row[0] else {}
                user_metadata = json.loads(row[1]) if row[1] else {}
                last_activity = row[2]
                session_user_id = row[3] if len(row) > 3 else user_id
                
                # Update user_id if it changed
                if session_user_id != user_id:
                    cursor.execute("""
                        UPDATE sessions SET user_id = ? WHERE session_id = ?
                    """, (user_id, session_id))
                    conn.commit()
                
                # Get previous interaction contexts for this session
                cursor.execute("""
                    SELECT interaction_summary, created_at
                    FROM interaction_contexts
                    WHERE session_id = ?
                    ORDER BY created_at DESC
                    LIMIT 20
                """, (session_id,))
                
                interaction_contexts = []
                for ic_row in cursor.fetchall():
                    if ic_row[0]:
                        interaction_contexts.append({
                            "summary": ic_row[0],
                            "timestamp": ic_row[1]
                        })
                
                context = {
                    "session_id": session_id,
                    "user_id": user_id,
                    "interaction_contexts": interaction_contexts,
                    "preferences": user_metadata.get("preferences", {}),
                    "active_tasks": user_metadata.get("active_tasks", []),
                    "last_activity": last_activity,
                    "user_context_loaded": False  # Will be loaded in manage_context
                }
                
                conn.close()
                return context
            else:
                # Create new session
                cursor.execute("""
                    INSERT INTO sessions (session_id, user_id, created_at, last_activity, context_data, user_metadata)
                    VALUES (?, ?, ?, ?, ?, ?)
                """, (session_id, user_id, datetime.now().isoformat(), datetime.now().isoformat(), "{}", "{}"))
                conn.commit()
                conn.close()
                
                return {
                    "session_id": session_id,
                    "user_id": user_id,
                    "interaction_contexts": [],
                    "preferences": {},
                    "active_tasks": [],
                    "user_context_loaded": False
                }
                
        except Exception as e:
            logger.error(f"Database retrieval error: {e}", exc_info=True)
            # Fallback to empty context
            return {
                "session_id": session_id,
                "user_id": user_id,
                "interaction_contexts": [],
                "preferences": {},
                "active_tasks": [],
                "user_context_loaded": False
            }
    
    def _warm_memory_cache(self, cache_key: str, context: dict):
        """
        Warm the in-memory cache with retrieved context
        """
        self.session_cache[cache_key] = context
    
    def _update_context(self, context: dict, user_input: str, response: str = None, user_id: str = "Test_Any") -> dict:
        """
        Update context with new user interaction and persist to database
        Note: Interaction context generation happens separately after response is generated
        """
        try:
            # Update session activity
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            # Update session last_activity
            cursor.execute("""
                UPDATE sessions 
                SET last_activity = ?, user_id = ?
                WHERE session_id = ?
            """, (datetime.now().isoformat(), user_id, context["session_id"]))
            
            # Insert basic interaction record (for backward compatibility)
            session_context = {
                "preferences": context.get("preferences", {}),
                "active_tasks": context.get("active_tasks", [])
            }
            
            cursor.execute("""
                INSERT INTO interactions (session_id, user_input, context_snapshot, created_at)
                VALUES (?, ?, ?, ?)
            """, (context["session_id"], user_input, json.dumps(session_context), datetime.now().isoformat()))
            
            conn.commit()
            conn.close()
            
        except Exception as e:
            logger.error(f"Context update error: {e}", exc_info=True)
        
        return context
    
    def _extract_entities(self, context: dict) -> list:
        """
        Extract essential entities from context
        """
        # TODO: Implement entity extraction
        return []
    
    def _generate_summary(self, context: dict) -> str:
        """
        Generate conversation summary
        """
        # TODO: Implement summary generation
        return ""