Commit
·
7862842
1
Parent(s):
f809b88
workflow errors debugging v12
Browse files- SESSION_CONTEXT_FIX.md +133 -0
- context_manager.py +6 -3
- src/agents/synthesis_agent.py +19 -4
SESSION_CONTEXT_FIX.md
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Session Context Integration Fix
|
| 2 |
+
|
| 3 |
+
## Problem Identified
|
| 4 |
+
|
| 5 |
+
User reported that session context is not working:
|
| 6 |
+
- Second question "Tell me more about his career decorations" should have known "his" refers to "Sam Altman" from the first question
|
| 7 |
+
- But the response was generic, suggesting no context retention
|
| 8 |
+
|
| 9 |
+
## Root Cause Analysis
|
| 10 |
+
|
| 11 |
+
From logs:
|
| 12 |
+
```
|
| 13 |
+
Session ID: d5e8171f (SAME for both messages ✓)
|
| 14 |
+
Context retrieved: 0 interactions (BUG! ❌)
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
The session ID persists correctly, but **context is returning 0 interactions** even though the first interaction was saved to the database.
|
| 18 |
+
|
| 19 |
+
## Fixes Applied
|
| 20 |
+
|
| 21 |
+
### 1. Fixed Context Structure (`context_manager.py`)
|
| 22 |
+
|
| 23 |
+
**Problem:** `_optimize_context()` was stripping the context and returning only a subset:
|
| 24 |
+
```python
|
| 25 |
+
return {
|
| 26 |
+
"essential_entities": self._extract_entities(context),
|
| 27 |
+
"conversation_summary": self._generate_summary(context),
|
| 28 |
+
"recent_interactions": context.get("interactions", [])[-3:], # Only 3 items
|
| 29 |
+
"user_preferences": context.get("preferences", {}),
|
| 30 |
+
"active_tasks": context.get("active_tasks", [])
|
| 31 |
+
}
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
**Solution:** Return full context structure including all interactions:
|
| 35 |
+
```python
|
| 36 |
+
return {
|
| 37 |
+
"session_id": context.get("session_id"),
|
| 38 |
+
"interactions": context.get("interactions", []), # Full history
|
| 39 |
+
"preferences": context.get("preferences", {}),
|
| 40 |
+
"active_tasks": context.get("active_tasks", []),
|
| 41 |
+
"essential_entities": self._extract_entities(context),
|
| 42 |
+
"conversation_summary": self._generate_summary(context),
|
| 43 |
+
"last_activity": context.get("last_activity")
|
| 44 |
+
}
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### 2. Enhanced Synthesis Agent with Context (`src/agents/synthesis_agent.py`)
|
| 48 |
+
|
| 49 |
+
**Problem:** Prompt didn't include conversation history.
|
| 50 |
+
|
| 51 |
+
**Solution:** Modified `_build_synthesis_prompt()` to include conversation history:
|
| 52 |
+
```python
|
| 53 |
+
# Extract conversation history for context
|
| 54 |
+
conversation_history = ""
|
| 55 |
+
if context and context.get('interactions'):
|
| 56 |
+
recent_interactions = context.get('interactions', [])[:3] # Last 3 interactions
|
| 57 |
+
if recent_interactions:
|
| 58 |
+
conversation_history = "\n\nPrevious conversation context:\n"
|
| 59 |
+
for i, interaction in enumerate(reversed(recent_interactions), 1):
|
| 60 |
+
user_msg = interaction.get('user_input', '')
|
| 61 |
+
if user_msg:
|
| 62 |
+
conversation_history += f"{i}. User asked: {user_msg}\n"
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
Now the prompt includes:
|
| 66 |
+
```
|
| 67 |
+
User Question: Tell me more about his career decorations
|
| 68 |
+
|
| 69 |
+
Previous conversation context:
|
| 70 |
+
1. User asked: Who is the CEO of OpenAI?
|
| 71 |
+
|
| 72 |
+
Instructions: Provide a comprehensive, helpful response that directly addresses the question. If there's conversation context, use it to answer the current question appropriately. Be detailed and informative.
|
| 73 |
+
|
| 74 |
+
Response:
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### 3. Added Debugging (`src/agents/synthesis_agent.py`)
|
| 78 |
+
|
| 79 |
+
Added logging to track context flow:
|
| 80 |
+
```python
|
| 81 |
+
# Log context for debugging
|
| 82 |
+
if context:
|
| 83 |
+
logger.info(f"{self.agent_id} context has {len(context.get('interactions', []))} interactions")
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
## Expected Behavior After Fix
|
| 87 |
+
|
| 88 |
+
### Example Conversation:
|
| 89 |
+
|
| 90 |
+
**Q1:** "Who is the CEO of OpenAI?"
|
| 91 |
+
- Session ID: `d5e8171f`
|
| 92 |
+
- Context: `[]` (empty, first message)
|
| 93 |
+
- Response: "Sam Altman"
|
| 94 |
+
- Saved to DB: `interactions` table
|
| 95 |
+
|
| 96 |
+
**Q2:** "Tell me more about his career decorations"
|
| 97 |
+
- Session ID: `d5e8171f` (same)
|
| 98 |
+
- Context: `[{"user_input": "Who is the CEO of OpenAI?", ...}]`
|
| 99 |
+
- **LLM Prompt:**
|
| 100 |
+
```
|
| 101 |
+
User Question: Tell me more about his career decorations
|
| 102 |
+
|
| 103 |
+
Previous conversation context:
|
| 104 |
+
1. User asked: Who is the CEO of OpenAI?
|
| 105 |
+
|
| 106 |
+
Instructions: ...use conversation context...
|
| 107 |
+
```
|
| 108 |
+
- Response: "Sam Altman's career decorations include..."
|
| 109 |
+
- Uses "his" = "Sam Altman" from context ✓
|
| 110 |
+
|
| 111 |
+
## Testing
|
| 112 |
+
|
| 113 |
+
To verify the fix works:
|
| 114 |
+
|
| 115 |
+
1. Ask: "Who is the CEO of OpenAI?"
|
| 116 |
+
2. Check logs for "Context retrieved: 1 interactions"
|
| 117 |
+
3. Ask follow-up: "Tell me more about him"
|
| 118 |
+
4. Verify response mentions Sam Altman (not generic)
|
| 119 |
+
|
| 120 |
+
## Files Modified
|
| 121 |
+
|
| 122 |
+
- `context_manager.py` - Fixed context structure
|
| 123 |
+
- `src/agents/synthesis_agent.py` - Added conversation history to prompt
|
| 124 |
+
- Added debugging logs
|
| 125 |
+
|
| 126 |
+
## Next Steps
|
| 127 |
+
|
| 128 |
+
The fix is ready to test. The changes ensure:
|
| 129 |
+
1. ✅ Full interaction history is preserved in context
|
| 130 |
+
2. ✅ Conversation history is included in LLM prompts
|
| 131 |
+
3. ✅ Follow-up questions can refer to previous messages
|
| 132 |
+
4. ✅ Session persistence works end-to-end
|
| 133 |
+
|
context_manager.py
CHANGED
|
@@ -81,12 +81,15 @@ class EfficientContextManager:
|
|
| 81 |
"""
|
| 82 |
Optimize context for LLM consumption
|
| 83 |
"""
|
|
|
|
| 84 |
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
"essential_entities": self._extract_entities(context),
|
| 86 |
"conversation_summary": self._generate_summary(context),
|
| 87 |
-
"
|
| 88 |
-
"user_preferences": context.get("preferences", {}),
|
| 89 |
-
"active_tasks": context.get("active_tasks", [])
|
| 90 |
}
|
| 91 |
|
| 92 |
def _get_from_memory_cache(self, session_id: str) -> dict:
|
|
|
|
| 81 |
"""
|
| 82 |
Optimize context for LLM consumption
|
| 83 |
"""
|
| 84 |
+
# Keep the full context structure for LLM consumption
|
| 85 |
return {
|
| 86 |
+
"session_id": context.get("session_id"),
|
| 87 |
+
"interactions": context.get("interactions", []), # Keep full interaction history
|
| 88 |
+
"preferences": context.get("preferences", {}),
|
| 89 |
+
"active_tasks": context.get("active_tasks", []),
|
| 90 |
"essential_entities": self._extract_entities(context),
|
| 91 |
"conversation_summary": self._generate_summary(context),
|
| 92 |
+
"last_activity": context.get("last_activity")
|
|
|
|
|
|
|
| 93 |
}
|
| 94 |
|
| 95 |
def _get_from_memory_cache(self, session_id: str) -> dict:
|
src/agents/synthesis_agent.py
CHANGED
|
@@ -48,6 +48,10 @@ class ResponseSynthesisAgent:
|
|
| 48 |
try:
|
| 49 |
logger.info(f"{self.agent_id} synthesizing {len(agent_outputs)} agent outputs")
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
# Extract intent information
|
| 52 |
intent_info = self._extract_intent_info(agent_outputs)
|
| 53 |
primary_intent = intent_info.get('primary_intent', 'casual_conversation')
|
|
@@ -164,17 +168,28 @@ class ResponseSynthesisAgent:
|
|
| 164 |
def _build_synthesis_prompt(self, agent_outputs: List[Dict[str, Any]],
|
| 165 |
user_input: str, context: Dict[str, Any],
|
| 166 |
primary_intent: str) -> str:
|
| 167 |
-
"""Build prompt for LLM-based synthesis - optimized for Qwen instruct format"""
|
| 168 |
|
| 169 |
# Build a comprehensive prompt for actual LLM generation
|
| 170 |
agent_content = self._format_agent_outputs_for_synthesis(agent_outputs)
|
| 171 |
|
| 172 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
prompt = f"""User Question: {user_input}
|
| 174 |
-
|
| 175 |
{agent_content if agent_content else ""}
|
| 176 |
|
| 177 |
-
Instructions: Provide a comprehensive, helpful response that directly addresses the question. Be detailed and informative.
|
| 178 |
|
| 179 |
Response:"""
|
| 180 |
|
|
|
|
| 48 |
try:
|
| 49 |
logger.info(f"{self.agent_id} synthesizing {len(agent_outputs)} agent outputs")
|
| 50 |
|
| 51 |
+
# Log context for debugging
|
| 52 |
+
if context:
|
| 53 |
+
logger.info(f"{self.agent_id} context has {len(context.get('interactions', []))} interactions")
|
| 54 |
+
|
| 55 |
# Extract intent information
|
| 56 |
intent_info = self._extract_intent_info(agent_outputs)
|
| 57 |
primary_intent = intent_info.get('primary_intent', 'casual_conversation')
|
|
|
|
| 168 |
def _build_synthesis_prompt(self, agent_outputs: List[Dict[str, Any]],
|
| 169 |
user_input: str, context: Dict[str, Any],
|
| 170 |
primary_intent: str) -> str:
|
| 171 |
+
"""Build prompt for LLM-based synthesis - optimized for Qwen instruct format with context"""
|
| 172 |
|
| 173 |
# Build a comprehensive prompt for actual LLM generation
|
| 174 |
agent_content = self._format_agent_outputs_for_synthesis(agent_outputs)
|
| 175 |
|
| 176 |
+
# Extract conversation history for context
|
| 177 |
+
conversation_history = ""
|
| 178 |
+
if context and context.get('interactions'):
|
| 179 |
+
recent_interactions = context.get('interactions', [])[:3] # Last 3 interactions
|
| 180 |
+
if recent_interactions:
|
| 181 |
+
conversation_history = "\n\nPrevious conversation context:\n"
|
| 182 |
+
for i, interaction in enumerate(reversed(recent_interactions), 1):
|
| 183 |
+
user_msg = interaction.get('user_input', '')
|
| 184 |
+
if user_msg:
|
| 185 |
+
conversation_history += f"{i}. User asked: {user_msg}\n"
|
| 186 |
+
|
| 187 |
+
# Qwen instruct format with conversation history
|
| 188 |
prompt = f"""User Question: {user_input}
|
| 189 |
+
{conversation_history}
|
| 190 |
{agent_content if agent_content else ""}
|
| 191 |
|
| 192 |
+
Instructions: Provide a comprehensive, helpful response that directly addresses the question. If there's conversation context, use it to answer the current question appropriately. Be detailed and informative.
|
| 193 |
|
| 194 |
Response:"""
|
| 195 |
|