Commit
·
a5d9083
1
Parent(s):
29048d9
cumulative upgrade - context + safety + response length v2
Browse files- agent_stubs.py +570 -8
- app.py +13 -5
- llm_router.py +100 -43
- orchestrator_engine.py +345 -5
- src/llm_router.py +100 -43
- src/orchestrator_engine.py +344 -5
agent_stubs.py
CHANGED
|
@@ -2,15 +2,23 @@
|
|
| 2 |
"""
|
| 3 |
Agent implementations for the orchestrator
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
"""
|
| 8 |
|
| 9 |
-
|
| 10 |
-
from
|
| 11 |
-
|
| 12 |
-
from src.agents.safety_agent import SafetyCheckAgent
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
class IntentRecognitionAgentStub(IntentRecognitionAgent):
|
| 15 |
"""
|
| 16 |
Wrapper for the fully implemented Intent Recognition Agent
|
|
@@ -18,9 +26,9 @@ class IntentRecognitionAgentStub(IntentRecognitionAgent):
|
|
| 18 |
"""
|
| 19 |
pass
|
| 20 |
|
| 21 |
-
class ResponseSynthesisAgentStub(
|
| 22 |
"""
|
| 23 |
-
Wrapper for the fully implemented
|
| 24 |
Maintains compatibility with orchestrator expectations
|
| 25 |
"""
|
| 26 |
pass
|
|
@@ -32,3 +40,557 @@ class SafetyCheckAgentStub(SafetyCheckAgent):
|
|
| 32 |
"""
|
| 33 |
pass
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"""
|
| 3 |
Agent implementations for the orchestrator
|
| 4 |
|
| 5 |
+
Core agents are fully implemented in src/agents/
|
| 6 |
+
Task-specific execution agents are implemented here
|
| 7 |
"""
|
| 8 |
|
| 9 |
+
import logging
|
| 10 |
+
from typing import Dict, Any, Optional
|
| 11 |
+
import asyncio
|
|
|
|
| 12 |
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
# Import the fully implemented core agents
|
| 16 |
+
from src.agents.intent_agent import IntentRecognitionAgent, create_intent_agent
|
| 17 |
+
from src.agents.synthesis_agent import EnhancedSynthesisAgent, create_synthesis_agent
|
| 18 |
+
from src.agents.safety_agent import SafetyCheckAgent, create_safety_agent
|
| 19 |
+
from src.agents.skills_identification_agent import SkillsIdentificationAgent, create_skills_identification_agent
|
| 20 |
+
|
| 21 |
+
# Compatibility wrappers for core agents
|
| 22 |
class IntentRecognitionAgentStub(IntentRecognitionAgent):
|
| 23 |
"""
|
| 24 |
Wrapper for the fully implemented Intent Recognition Agent
|
|
|
|
| 26 |
"""
|
| 27 |
pass
|
| 28 |
|
| 29 |
+
class ResponseSynthesisAgentStub(EnhancedSynthesisAgent):
|
| 30 |
"""
|
| 31 |
+
Wrapper for the fully implemented Enhanced Synthesis Agent
|
| 32 |
Maintains compatibility with orchestrator expectations
|
| 33 |
"""
|
| 34 |
pass
|
|
|
|
| 40 |
"""
|
| 41 |
pass
|
| 42 |
|
| 43 |
+
class SkillsIdentificationAgentStub(SkillsIdentificationAgent):
|
| 44 |
+
"""
|
| 45 |
+
Wrapper for the fully implemented Skills Identification Agent
|
| 46 |
+
Maintains compatibility with orchestrator expectations
|
| 47 |
+
"""
|
| 48 |
+
pass
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# ============================================================================
|
| 52 |
+
# Task-Specific Execution Agents
|
| 53 |
+
# These agents handle specialized tasks in the execution plan
|
| 54 |
+
# ============================================================================
|
| 55 |
+
|
| 56 |
+
class TaskExecutionAgent:
|
| 57 |
+
"""
|
| 58 |
+
Base class for task-specific execution agents
|
| 59 |
+
Provides common functionality for all task agents
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
def __init__(self, llm_router, agent_id: str, task_name: str, specialization: str = ""):
|
| 63 |
+
"""
|
| 64 |
+
Initialize task execution agent
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
llm_router: LLMRouter instance for making inference calls
|
| 68 |
+
agent_id: Unique identifier for this agent
|
| 69 |
+
task_name: Name of the task this agent handles
|
| 70 |
+
specialization: Description of what this agent specializes in
|
| 71 |
+
"""
|
| 72 |
+
self.llm_router = llm_router
|
| 73 |
+
self.agent_id = agent_id
|
| 74 |
+
self.task_name = task_name
|
| 75 |
+
self.specialization = specialization or f"Specialized in {task_name} tasks"
|
| 76 |
+
logger.info(f"Initialized {self.agent_id}: {self.specialization}")
|
| 77 |
+
|
| 78 |
+
async def execute(self, user_input: str, context: Dict[str, Any] = None,
|
| 79 |
+
previous_results: Dict[str, Any] = None, **kwargs) -> Dict[str, Any]:
|
| 80 |
+
"""
|
| 81 |
+
Execute the agent's task
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
user_input: Original user query
|
| 85 |
+
context: Conversation context
|
| 86 |
+
previous_results: Results from previous sequential tasks
|
| 87 |
+
**kwargs: Additional parameters
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
Dict with task execution results
|
| 91 |
+
"""
|
| 92 |
+
try:
|
| 93 |
+
logger.info(f"{self.agent_id} executing task: {self.task_name}")
|
| 94 |
+
|
| 95 |
+
# Build task-specific prompt
|
| 96 |
+
prompt = self._build_execution_prompt(user_input, context, previous_results, **kwargs)
|
| 97 |
+
|
| 98 |
+
# Execute via LLM router
|
| 99 |
+
logger.debug(f"{self.agent_id} calling LLM router for {self.task_name}")
|
| 100 |
+
result = await self.llm_router.route_inference(
|
| 101 |
+
task_type="general_reasoning",
|
| 102 |
+
prompt=prompt,
|
| 103 |
+
max_tokens=kwargs.get('max_tokens', 2000),
|
| 104 |
+
temperature=kwargs.get('temperature', 0.7)
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if result:
|
| 108 |
+
return {
|
| 109 |
+
"agent_id": self.agent_id,
|
| 110 |
+
"task": self.task_name,
|
| 111 |
+
"status": "completed",
|
| 112 |
+
"content": result,
|
| 113 |
+
"content_length": len(str(result)),
|
| 114 |
+
"method": "llm_enhanced"
|
| 115 |
+
}
|
| 116 |
+
else:
|
| 117 |
+
logger.warning(f"{self.agent_id} returned empty result")
|
| 118 |
+
return {
|
| 119 |
+
"agent_id": self.agent_id,
|
| 120 |
+
"task": self.task_name,
|
| 121 |
+
"status": "empty",
|
| 122 |
+
"content": "",
|
| 123 |
+
"content_length": 0,
|
| 124 |
+
"method": "llm_enhanced"
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
except Exception as e:
|
| 128 |
+
logger.error(f"{self.agent_id} execution failed: {e}", exc_info=True)
|
| 129 |
+
return {
|
| 130 |
+
"agent_id": self.agent_id,
|
| 131 |
+
"task": self.task_name,
|
| 132 |
+
"status": "error",
|
| 133 |
+
"error": str(e),
|
| 134 |
+
"content": "",
|
| 135 |
+
"method": "llm_enhanced"
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
def _build_execution_prompt(self, user_input: str, context: Dict[str, Any] = None,
|
| 139 |
+
previous_results: Dict[str, Any] = None, **kwargs) -> str:
|
| 140 |
+
"""
|
| 141 |
+
Build task-specific execution prompt
|
| 142 |
+
Override in subclasses for custom prompt building
|
| 143 |
+
"""
|
| 144 |
+
# Build context summary
|
| 145 |
+
context_summary = self._build_context_summary(context)
|
| 146 |
+
|
| 147 |
+
# Base prompt structure
|
| 148 |
+
prompt = f"""User Query: {user_input}
|
| 149 |
+
|
| 150 |
+
Context: {context_summary}
|
| 151 |
+
"""
|
| 152 |
+
|
| 153 |
+
# Add previous results if sequential execution
|
| 154 |
+
if previous_results:
|
| 155 |
+
prompt += f"\nPrevious Task Results:\n{self._format_previous_results(previous_results)}\n"
|
| 156 |
+
|
| 157 |
+
# Add task-specific instructions
|
| 158 |
+
prompt += f"\n{self._get_task_instructions()}"
|
| 159 |
+
|
| 160 |
+
return prompt
|
| 161 |
+
|
| 162 |
+
def _build_context_summary(self, context: Dict[str, Any] = None) -> str:
|
| 163 |
+
"""Build concise context summary"""
|
| 164 |
+
if not context:
|
| 165 |
+
return "No prior context"
|
| 166 |
+
|
| 167 |
+
summary_parts = []
|
| 168 |
+
|
| 169 |
+
# Extract interaction contexts
|
| 170 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 171 |
+
if interaction_contexts:
|
| 172 |
+
recent_summaries = [ic.get('summary', '') for ic in interaction_contexts[-3:]]
|
| 173 |
+
if recent_summaries:
|
| 174 |
+
summary_parts.append(f"Recent topics: {', '.join(recent_summaries)}")
|
| 175 |
+
|
| 176 |
+
# Extract user context
|
| 177 |
+
user_context = context.get('user_context', '')
|
| 178 |
+
if user_context:
|
| 179 |
+
summary_parts.append(f"User background: {user_context[:200]}")
|
| 180 |
+
|
| 181 |
+
return " | ".join(summary_parts) if summary_parts else "No prior context"
|
| 182 |
+
|
| 183 |
+
def _format_previous_results(self, previous_results: Dict[str, Any]) -> str:
|
| 184 |
+
"""Format previous task results for inclusion in prompt"""
|
| 185 |
+
formatted = []
|
| 186 |
+
for task_name, result in previous_results.items():
|
| 187 |
+
if isinstance(result, dict):
|
| 188 |
+
content = result.get('content', result.get('result', ''))
|
| 189 |
+
if content:
|
| 190 |
+
formatted.append(f"- {task_name}: {str(content)[:500]}")
|
| 191 |
+
return "\n".join(formatted) if formatted else "No previous results"
|
| 192 |
+
|
| 193 |
+
def _get_task_instructions(self) -> str:
|
| 194 |
+
"""
|
| 195 |
+
Get task-specific instructions
|
| 196 |
+
Override in subclasses
|
| 197 |
+
"""
|
| 198 |
+
return f"Task: Execute {self.task_name} based on the user query and context."
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
# ============================================================================
|
| 202 |
+
# Specific Task Execution Agents
|
| 203 |
+
# ============================================================================
|
| 204 |
+
|
| 205 |
+
class InformationGatheringAgent(TaskExecutionAgent):
|
| 206 |
+
"""Agent specialized in gathering comprehensive information"""
|
| 207 |
+
|
| 208 |
+
def __init__(self, llm_router):
|
| 209 |
+
super().__init__(
|
| 210 |
+
llm_router,
|
| 211 |
+
agent_id="INFO_GATH_001",
|
| 212 |
+
task_name="information_gathering",
|
| 213 |
+
specialization="Comprehensive information gathering and fact verification"
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
def _get_task_instructions(self) -> str:
|
| 217 |
+
return """Task: Gather comprehensive, accurate information relevant to the user's query.
|
| 218 |
+
- Focus on facts, definitions, explanations, and verified information
|
| 219 |
+
- Structure the information clearly with key points
|
| 220 |
+
- Cite important details and provide context
|
| 221 |
+
- Ensure accuracy and completeness"""
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class ContentResearchAgent(TaskExecutionAgent):
|
| 225 |
+
"""Agent specialized in researching and compiling content"""
|
| 226 |
+
|
| 227 |
+
def __init__(self, llm_router):
|
| 228 |
+
super().__init__(
|
| 229 |
+
llm_router,
|
| 230 |
+
agent_id="CONTENT_RESEARCH_001",
|
| 231 |
+
task_name="content_research",
|
| 232 |
+
specialization="Detailed content research and compilation"
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
def _get_task_instructions(self) -> str:
|
| 236 |
+
return """Task: Research and compile detailed content about the topic.
|
| 237 |
+
- Include multiple perspectives and viewpoints
|
| 238 |
+
- Gather current information and relevant examples
|
| 239 |
+
- Organize findings logically with clear sections
|
| 240 |
+
- Provide comprehensive coverage of the topic"""
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
class TaskPlanningAgent(TaskExecutionAgent):
|
| 244 |
+
"""Agent specialized in creating detailed execution plans"""
|
| 245 |
+
|
| 246 |
+
def __init__(self, llm_router):
|
| 247 |
+
super().__init__(
|
| 248 |
+
llm_router,
|
| 249 |
+
agent_id="TASK_PLAN_001",
|
| 250 |
+
task_name="task_planning",
|
| 251 |
+
specialization="Detailed task planning and execution strategy"
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
def _get_task_instructions(self) -> str:
|
| 255 |
+
return """Task: Create a detailed execution plan for the requested task.
|
| 256 |
+
- Break down into clear, actionable steps
|
| 257 |
+
- Identify requirements and dependencies
|
| 258 |
+
- Outline expected outcomes and success criteria
|
| 259 |
+
- Consider potential challenges and solutions
|
| 260 |
+
- Provide timeline and resource estimates"""
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
class ExecutionStrategyAgent(TaskExecutionAgent):
|
| 264 |
+
"""Agent specialized in developing strategic approaches"""
|
| 265 |
+
|
| 266 |
+
def __init__(self, llm_router):
|
| 267 |
+
super().__init__(
|
| 268 |
+
llm_router,
|
| 269 |
+
agent_id="EXEC_STRAT_001",
|
| 270 |
+
task_name="execution_strategy",
|
| 271 |
+
specialization="Strategic execution methodology development"
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
def _get_task_instructions(self) -> str:
|
| 275 |
+
return """Task: Develop a strategic approach for task execution.
|
| 276 |
+
- Define methodology and best practices
|
| 277 |
+
- Identify implementation considerations
|
| 278 |
+
- Provide actionable guidance with clear priorities
|
| 279 |
+
- Consider efficiency and effectiveness
|
| 280 |
+
- Address risk mitigation strategies"""
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
class CreativeBrainstormingAgent(TaskExecutionAgent):
|
| 284 |
+
"""Agent specialized in creative ideation"""
|
| 285 |
+
|
| 286 |
+
def __init__(self, llm_router):
|
| 287 |
+
super().__init__(
|
| 288 |
+
llm_router,
|
| 289 |
+
agent_id="CREATIVE_BS_001",
|
| 290 |
+
task_name="creative_brainstorming",
|
| 291 |
+
specialization="Creative ideas generation and brainstorming"
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
def _get_task_instructions(self) -> str:
|
| 295 |
+
return """Task: Generate creative ideas and approaches for content creation.
|
| 296 |
+
- Explore different angles, styles, and formats
|
| 297 |
+
- Provide diverse creative options
|
| 298 |
+
- Include implementation suggestions
|
| 299 |
+
- Encourage innovative thinking
|
| 300 |
+
- Balance creativity with practicality"""
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
class ContentIdeationAgent(TaskExecutionAgent):
|
| 304 |
+
"""Agent specialized in content concept development"""
|
| 305 |
+
|
| 306 |
+
def __init__(self, llm_router):
|
| 307 |
+
super().__init__(
|
| 308 |
+
llm_router,
|
| 309 |
+
agent_id="CONTENT_IDEATION_001",
|
| 310 |
+
task_name="content_ideation",
|
| 311 |
+
specialization="Content concepts and ideation development"
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
def _get_task_instructions(self) -> str:
|
| 315 |
+
return """Task: Develop content concepts and detailed ideation.
|
| 316 |
+
- Create outlines and structural frameworks
|
| 317 |
+
- Define themes and key messaging
|
| 318 |
+
- Suggest variations and refinement paths
|
| 319 |
+
- Provide detailed development paths
|
| 320 |
+
- Consider audience and purpose"""
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
class ResearchAnalysisAgent(TaskExecutionAgent):
|
| 324 |
+
"""Agent specialized in research analysis"""
|
| 325 |
+
|
| 326 |
+
def __init__(self, llm_router):
|
| 327 |
+
super().__init__(
|
| 328 |
+
llm_router,
|
| 329 |
+
agent_id="RESEARCH_ANALYSIS_001",
|
| 330 |
+
task_name="research_analysis",
|
| 331 |
+
specialization="Thorough research analysis and insights"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
def _get_task_instructions(self) -> str:
|
| 335 |
+
return """Task: Conduct thorough research analysis on the topic.
|
| 336 |
+
- Identify key findings, trends, and patterns
|
| 337 |
+
- Analyze different perspectives and methodologies
|
| 338 |
+
- Provide comprehensive insights
|
| 339 |
+
- Evaluate evidence and sources
|
| 340 |
+
- Synthesize complex information"""
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class DataCollectionAgent(TaskExecutionAgent):
|
| 344 |
+
"""Agent specialized in data collection and organization"""
|
| 345 |
+
|
| 346 |
+
def __init__(self, llm_router):
|
| 347 |
+
super().__init__(
|
| 348 |
+
llm_router,
|
| 349 |
+
agent_id="DATA_COLLECT_001",
|
| 350 |
+
task_name="data_collection",
|
| 351 |
+
specialization="Data point collection and evidence gathering"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def _get_task_instructions(self) -> str:
|
| 355 |
+
return """Task: Collect and organize relevant data points and evidence.
|
| 356 |
+
- Gather statistics, examples, and case studies
|
| 357 |
+
- Compile supporting information
|
| 358 |
+
- Structure data for easy analysis and reference
|
| 359 |
+
- Verify data quality and relevance
|
| 360 |
+
- Organize systematically"""
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
class PatternIdentificationAgent(TaskExecutionAgent):
|
| 364 |
+
"""Agent specialized in pattern recognition and analysis"""
|
| 365 |
+
|
| 366 |
+
def __init__(self, llm_router):
|
| 367 |
+
super().__init__(
|
| 368 |
+
llm_router,
|
| 369 |
+
agent_id="PATTERN_ID_001",
|
| 370 |
+
task_name="pattern_identification",
|
| 371 |
+
specialization="Pattern recognition and correlation analysis"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
def _get_task_instructions(self) -> str:
|
| 375 |
+
return """Task: Identify patterns, correlations, and significant relationships.
|
| 376 |
+
- Analyze trends and cause-effect relationships
|
| 377 |
+
- Discover underlying structures
|
| 378 |
+
- Provide insights based on pattern recognition
|
| 379 |
+
- Identify anomalies and exceptions
|
| 380 |
+
- Connect disparate information"""
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
class ProblemAnalysisAgent(TaskExecutionAgent):
|
| 384 |
+
"""Agent specialized in problem analysis"""
|
| 385 |
+
|
| 386 |
+
def __init__(self, llm_router):
|
| 387 |
+
super().__init__(
|
| 388 |
+
llm_router,
|
| 389 |
+
agent_id="PROBLEM_ANALYSIS_001",
|
| 390 |
+
task_name="problem_analysis",
|
| 391 |
+
specialization="Detailed problem analysis and root cause identification"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
def _get_task_instructions(self) -> str:
|
| 395 |
+
return """Task: Analyze the problem in detail.
|
| 396 |
+
- Identify root causes and contributing factors
|
| 397 |
+
- Understand constraints and limitations
|
| 398 |
+
- Break down the problem into components
|
| 399 |
+
- Map problem relationships
|
| 400 |
+
- Prioritize issues for systematic resolution"""
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
class SolutionResearchAgent(TaskExecutionAgent):
|
| 404 |
+
"""Agent specialized in solution research and evaluation"""
|
| 405 |
+
|
| 406 |
+
def __init__(self, llm_router):
|
| 407 |
+
super().__init__(
|
| 408 |
+
llm_router,
|
| 409 |
+
agent_id="SOLUTION_RESEARCH_001",
|
| 410 |
+
task_name="solution_research",
|
| 411 |
+
specialization="Solution research and evaluation"
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
def _get_task_instructions(self) -> str:
|
| 415 |
+
return """Task: Research and evaluate potential solutions.
|
| 416 |
+
- Compare different approaches and methodologies
|
| 417 |
+
- Assess pros and cons of each option
|
| 418 |
+
- Recommend best practices
|
| 419 |
+
- Consider implementation feasibility
|
| 420 |
+
- Evaluate effectiveness and efficiency"""
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
class CurriculumPlanningAgent(TaskExecutionAgent):
|
| 424 |
+
"""Agent specialized in educational curriculum design"""
|
| 425 |
+
|
| 426 |
+
def __init__(self, llm_router):
|
| 427 |
+
super().__init__(
|
| 428 |
+
llm_router,
|
| 429 |
+
agent_id="CURRICULUM_PLAN_001",
|
| 430 |
+
task_name="curriculum_planning",
|
| 431 |
+
specialization="Educational curriculum and learning path design"
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
def _get_task_instructions(self) -> str:
|
| 435 |
+
return """Task: Design educational curriculum and learning path.
|
| 436 |
+
- Structure content progressively
|
| 437 |
+
- Define clear learning objectives
|
| 438 |
+
- Suggest appropriate resources
|
| 439 |
+
- Create comprehensive learning framework
|
| 440 |
+
- Ensure pedagogical effectiveness"""
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
class EducationalContentAgent(TaskExecutionAgent):
|
| 444 |
+
"""Agent specialized in educational content generation"""
|
| 445 |
+
|
| 446 |
+
def __init__(self, llm_router):
|
| 447 |
+
super().__init__(
|
| 448 |
+
llm_router,
|
| 449 |
+
agent_id="EDUC_CONTENT_001",
|
| 450 |
+
task_name="educational_content",
|
| 451 |
+
specialization="Educational content with clear explanations"
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
def _get_task_instructions(self) -> str:
|
| 455 |
+
return """Task: Generate educational content with clear explanations.
|
| 456 |
+
- Use effective teaching methods
|
| 457 |
+
- Provide examples and analogies
|
| 458 |
+
- Manage progressive complexity
|
| 459 |
+
- Make content accessible and engaging
|
| 460 |
+
- Support learning objectives"""
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
class TechnicalResearchAgent(TaskExecutionAgent):
|
| 464 |
+
"""Agent specialized in technical research"""
|
| 465 |
+
|
| 466 |
+
def __init__(self, llm_router):
|
| 467 |
+
super().__init__(
|
| 468 |
+
llm_router,
|
| 469 |
+
agent_id="TECH_RESEARCH_001",
|
| 470 |
+
task_name="technical_research",
|
| 471 |
+
specialization="Technical aspects and solutions research"
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
def _get_task_instructions(self) -> str:
|
| 475 |
+
return """Task: Research technical aspects and solutions.
|
| 476 |
+
- Gather technical documentation
|
| 477 |
+
- Identify best practices and standards
|
| 478 |
+
- Compile implementation details
|
| 479 |
+
- Structure technical information clearly
|
| 480 |
+
- Provide practical guidance"""
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class GuidanceGenerationAgent(TaskExecutionAgent):
|
| 484 |
+
"""Agent specialized in step-by-step guidance"""
|
| 485 |
+
|
| 486 |
+
def __init__(self, llm_router):
|
| 487 |
+
super().__init__(
|
| 488 |
+
llm_router,
|
| 489 |
+
agent_id="GUIDANCE_GEN_001",
|
| 490 |
+
task_name="guidance_generation",
|
| 491 |
+
specialization="Step-by-step guidance and instructions"
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
def _get_task_instructions(self) -> str:
|
| 495 |
+
return """Task: Generate step-by-step guidance and instructions.
|
| 496 |
+
- Create clear, actionable steps
|
| 497 |
+
- Provide detailed explanations
|
| 498 |
+
- Include troubleshooting tips
|
| 499 |
+
- Ensure comprehensiveness
|
| 500 |
+
- Make guidance easy to follow"""
|
| 501 |
+
|
| 502 |
+
|
| 503 |
+
class ContextEnrichmentAgent(TaskExecutionAgent):
|
| 504 |
+
"""Agent specialized in context enrichment"""
|
| 505 |
+
|
| 506 |
+
def __init__(self, llm_router):
|
| 507 |
+
super().__init__(
|
| 508 |
+
llm_router,
|
| 509 |
+
agent_id="CONTEXT_ENRICH_001",
|
| 510 |
+
task_name="context_enrichment",
|
| 511 |
+
specialization="Conversation context enrichment"
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
def _get_task_instructions(self) -> str:
|
| 515 |
+
return """Task: Enrich the conversation with relevant context and insights.
|
| 516 |
+
- Add helpful background information
|
| 517 |
+
- Connect to previous topics
|
| 518 |
+
- Include engaging details
|
| 519 |
+
- Enhance understanding
|
| 520 |
+
- Maintain conversation flow"""
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
class GeneralResearchAgent(TaskExecutionAgent):
|
| 524 |
+
"""Agent for general research tasks"""
|
| 525 |
+
|
| 526 |
+
def __init__(self, llm_router):
|
| 527 |
+
super().__init__(
|
| 528 |
+
llm_router,
|
| 529 |
+
agent_id="GENERAL_RESEARCH_001",
|
| 530 |
+
task_name="general_research",
|
| 531 |
+
specialization="General research and information gathering"
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
def _get_task_instructions(self) -> str:
|
| 535 |
+
return """Task: Conduct general research and information gathering.
|
| 536 |
+
- Compile relevant information
|
| 537 |
+
- Gather insights and useful details
|
| 538 |
+
- Organize findings clearly
|
| 539 |
+
- Provide comprehensive coverage
|
| 540 |
+
- Structure for easy reference"""
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
# ============================================================================
|
| 544 |
+
# Factory Functions for Task Execution Agents
|
| 545 |
+
# ============================================================================
|
| 546 |
+
|
| 547 |
+
def create_task_execution_agent(task_name: str, llm_router) -> TaskExecutionAgent:
|
| 548 |
+
"""
|
| 549 |
+
Factory function to create task-specific execution agents
|
| 550 |
+
|
| 551 |
+
Args:
|
| 552 |
+
task_name: Name of the task to create an agent for
|
| 553 |
+
llm_router: LLMRouter instance
|
| 554 |
+
|
| 555 |
+
Returns:
|
| 556 |
+
Appropriate TaskExecutionAgent instance
|
| 557 |
+
"""
|
| 558 |
+
agent_map = {
|
| 559 |
+
"information_gathering": InformationGatheringAgent,
|
| 560 |
+
"content_research": ContentResearchAgent,
|
| 561 |
+
"task_planning": TaskPlanningAgent,
|
| 562 |
+
"execution_strategy": ExecutionStrategyAgent,
|
| 563 |
+
"creative_brainstorming": CreativeBrainstormingAgent,
|
| 564 |
+
"content_ideation": ContentIdeationAgent,
|
| 565 |
+
"research_analysis": ResearchAnalysisAgent,
|
| 566 |
+
"data_collection": DataCollectionAgent,
|
| 567 |
+
"pattern_identification": PatternIdentificationAgent,
|
| 568 |
+
"problem_analysis": ProblemAnalysisAgent,
|
| 569 |
+
"solution_research": SolutionResearchAgent,
|
| 570 |
+
"curriculum_planning": CurriculumPlanningAgent,
|
| 571 |
+
"educational_content": EducationalContentAgent,
|
| 572 |
+
"technical_research": TechnicalResearchAgent,
|
| 573 |
+
"guidance_generation": GuidanceGenerationAgent,
|
| 574 |
+
"context_enrichment": ContextEnrichmentAgent,
|
| 575 |
+
"general_research": GeneralResearchAgent,
|
| 576 |
+
}
|
| 577 |
+
|
| 578 |
+
agent_class = agent_map.get(task_name, GeneralResearchAgent)
|
| 579 |
+
return agent_class(llm_router)
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
def create_task_execution_agents(task_names: list, llm_router) -> Dict[str, TaskExecutionAgent]:
|
| 583 |
+
"""
|
| 584 |
+
Factory function to create multiple task execution agents
|
| 585 |
+
|
| 586 |
+
Args:
|
| 587 |
+
task_names: List of task names to create agents for
|
| 588 |
+
llm_router: LLMRouter instance
|
| 589 |
+
|
| 590 |
+
Returns:
|
| 591 |
+
Dictionary mapping task names to agent instances
|
| 592 |
+
"""
|
| 593 |
+
agents = {}
|
| 594 |
+
for task_name in task_names:
|
| 595 |
+
agents[task_name] = create_task_execution_agent(task_name, llm_router)
|
| 596 |
+
return agents
|
app.py
CHANGED
|
@@ -45,7 +45,8 @@ try:
|
|
| 45 |
orchestrator_available = True
|
| 46 |
except ImportError as e:
|
| 47 |
logger.warning(f"Could not import orchestration components: {e}")
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
try:
|
| 51 |
from spaces import GPU
|
|
@@ -483,8 +484,9 @@ def setup_event_handlers(demo, event_handlers):
|
|
| 483 |
outputs=[components.get('message_input'), components.get('chatbot')]
|
| 484 |
)
|
| 485 |
except Exception as e:
|
| 486 |
-
|
| 487 |
-
#
|
|
|
|
| 488 |
|
| 489 |
return demo
|
| 490 |
|
|
@@ -711,12 +713,18 @@ async def process_message_async(message: str, history: Optional[List], session_i
|
|
| 711 |
else:
|
| 712 |
response = str(result) if result else "Processing complete."
|
| 713 |
|
| 714 |
-
# Final safety check - ensure response is not empty
|
| 715 |
# Handle both string and dict types
|
| 716 |
if isinstance(response, dict):
|
| 717 |
response = str(response.get('content', response))
|
| 718 |
if not response or (isinstance(response, str) and len(response.strip()) == 0):
|
| 719 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 720 |
|
| 721 |
logger.info(f"Orchestrator returned response (length: {len(response)})")
|
| 722 |
|
|
|
|
| 45 |
orchestrator_available = True
|
| 46 |
except ImportError as e:
|
| 47 |
logger.warning(f"Could not import orchestration components: {e}")
|
| 48 |
+
# Note: System will gracefully degrade if orchestrator unavailable
|
| 49 |
+
# This is handled in process_message_async with proper user-facing messages
|
| 50 |
|
| 51 |
try:
|
| 52 |
from spaces import GPU
|
|
|
|
| 484 |
outputs=[components.get('message_input'), components.get('chatbot')]
|
| 485 |
)
|
| 486 |
except Exception as e:
|
| 487 |
+
logger.error(f"Could not setup event handlers: {e}", exc_info=True)
|
| 488 |
+
# Event handlers setup failure is logged but won't affect core chat functionality
|
| 489 |
+
# Gradio interface will still work with default handlers
|
| 490 |
|
| 491 |
return demo
|
| 492 |
|
|
|
|
| 713 |
else:
|
| 714 |
response = str(result) if result else "Processing complete."
|
| 715 |
|
| 716 |
+
# Final safety check - ensure response is not empty (only for actual errors)
|
| 717 |
# Handle both string and dict types
|
| 718 |
if isinstance(response, dict):
|
| 719 |
response = str(response.get('content', response))
|
| 720 |
if not response or (isinstance(response, str) and len(response.strip()) == 0):
|
| 721 |
+
# This should only happen if LLM API completely fails - log it
|
| 722 |
+
logger.warning(f"Empty response received from orchestrator for message: {message[:50]}...")
|
| 723 |
+
response = (
|
| 724 |
+
f"I received your message about '{message[:50]}...'. "
|
| 725 |
+
f"I'm processing your request and working on providing you with a comprehensive answer. "
|
| 726 |
+
f"Please wait a moment and try again if needed."
|
| 727 |
+
)
|
| 728 |
|
| 729 |
logger.info(f"Orchestrator returned response (length: {len(response)})")
|
| 730 |
|
llm_router.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# llm_router.py - FIXED VERSION
|
| 2 |
import logging
|
|
|
|
| 3 |
from models_config import LLM_CONFIG
|
| 4 |
|
| 5 |
logger = logging.getLogger(__name__)
|
|
@@ -73,12 +74,19 @@ class LLMRouter:
|
|
| 73 |
async def _call_hf_endpoint(self, model_config: dict, prompt: str, task_type: str, **kwargs):
|
| 74 |
"""
|
| 75 |
FIXED: Make actual call to Hugging Face Chat Completions API
|
| 76 |
-
Uses the correct chat completions protocol
|
| 77 |
|
| 78 |
IMPORTANT: task_type parameter is now properly included in the method signature
|
| 79 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
try:
|
| 81 |
import requests
|
|
|
|
| 82 |
|
| 83 |
model_id = model_config["model_id"]
|
| 84 |
|
|
@@ -125,51 +133,100 @@ class LLMRouter:
|
|
| 125 |
"Content-Type": "application/json"
|
| 126 |
}
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
if 'choices' in result and len(result['choices']) > 0:
|
| 138 |
-
generated_text = result['choices'][0]['message']['content']
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
return None
|
| 143 |
|
| 144 |
-
|
| 145 |
-
logger.info("=" * 80)
|
| 146 |
-
logger.info("COMPLETE LLM API RESPONSE:")
|
| 147 |
-
logger.info("=" * 80)
|
| 148 |
-
logger.info(f"Model: {model_id}")
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
return None
|
| 174 |
|
| 175 |
except ImportError:
|
|
|
|
| 1 |
# llm_router.py - FIXED VERSION
|
| 2 |
import logging
|
| 3 |
+
import asyncio
|
| 4 |
from models_config import LLM_CONFIG
|
| 5 |
|
| 6 |
logger = logging.getLogger(__name__)
|
|
|
|
| 74 |
async def _call_hf_endpoint(self, model_config: dict, prompt: str, task_type: str, **kwargs):
|
| 75 |
"""
|
| 76 |
FIXED: Make actual call to Hugging Face Chat Completions API
|
| 77 |
+
Uses the correct chat completions protocol with retry logic and exponential backoff
|
| 78 |
|
| 79 |
IMPORTANT: task_type parameter is now properly included in the method signature
|
| 80 |
"""
|
| 81 |
+
# Retry configuration
|
| 82 |
+
max_retries = kwargs.get('max_retries', 3)
|
| 83 |
+
initial_delay = kwargs.get('initial_delay', 1.0) # Start with 1 second
|
| 84 |
+
max_delay = kwargs.get('max_delay', 16.0) # Cap at 16 seconds
|
| 85 |
+
timeout = kwargs.get('timeout', 30)
|
| 86 |
+
|
| 87 |
try:
|
| 88 |
import requests
|
| 89 |
+
from requests.exceptions import Timeout, RequestException, ConnectionError as RequestsConnectionError
|
| 90 |
|
| 91 |
model_id = model_config["model_id"]
|
| 92 |
|
|
|
|
| 133 |
"Content-Type": "application/json"
|
| 134 |
}
|
| 135 |
|
| 136 |
+
# Retry logic with exponential backoff
|
| 137 |
+
last_exception = None
|
| 138 |
+
for attempt in range(max_retries + 1):
|
| 139 |
+
try:
|
| 140 |
+
if attempt > 0:
|
| 141 |
+
# Calculate exponential backoff delay
|
| 142 |
+
delay = min(initial_delay * (2 ** (attempt - 1)), max_delay)
|
| 143 |
+
logger.warning(f"Retry attempt {attempt}/{max_retries} after {delay:.1f}s delay (exponential backoff)")
|
| 144 |
+
await asyncio.sleep(delay)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
logger.info(f"Sending request to: {api_url} (attempt {attempt + 1}/{max_retries + 1})")
|
| 147 |
+
logger.debug(f"Payload: {payload}")
|
|
|
|
| 148 |
|
| 149 |
+
response = requests.post(api_url, json=payload, headers=headers, timeout=timeout)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
if response.status_code == 200:
|
| 152 |
+
result = response.json()
|
| 153 |
+
logger.debug(f"Raw response: {result}")
|
| 154 |
+
|
| 155 |
+
if 'choices' in result and len(result['choices']) > 0:
|
| 156 |
+
generated_text = result['choices'][0]['message']['content']
|
| 157 |
+
|
| 158 |
+
if not generated_text or generated_text.strip() == "":
|
| 159 |
+
logger.warning(f"Empty or invalid response, using fallback")
|
| 160 |
+
return None
|
| 161 |
+
|
| 162 |
+
if attempt > 0:
|
| 163 |
+
logger.info(f"Successfully retrieved response after {attempt} retry attempts")
|
| 164 |
+
|
| 165 |
+
logger.info(f"HF API returned response (length: {len(generated_text)})")
|
| 166 |
+
logger.info("=" * 80)
|
| 167 |
+
logger.info("COMPLETE LLM API RESPONSE:")
|
| 168 |
+
logger.info("=" * 80)
|
| 169 |
+
logger.info(f"Model: {model_id}")
|
| 170 |
+
|
| 171 |
+
# FIXED: task_type is now properly available
|
| 172 |
+
logger.info(f"Task Type: {task_type}")
|
| 173 |
+
logger.info(f"Response Length: {len(generated_text)} characters")
|
| 174 |
+
logger.info("-" * 40)
|
| 175 |
+
logger.info("FULL RESPONSE CONTENT:")
|
| 176 |
+
logger.info("-" * 40)
|
| 177 |
+
logger.info(generated_text)
|
| 178 |
+
logger.info("-" * 40)
|
| 179 |
+
logger.info("END OF LLM RESPONSE")
|
| 180 |
+
logger.info("=" * 80)
|
| 181 |
+
return generated_text
|
| 182 |
+
else:
|
| 183 |
+
logger.error(f"Unexpected response format: {result}")
|
| 184 |
+
return None
|
| 185 |
+
elif response.status_code == 503:
|
| 186 |
+
# Model is loading - this is retryable
|
| 187 |
+
if attempt < max_retries:
|
| 188 |
+
logger.warning(f"Model loading (503), will retry (attempt {attempt + 1}/{max_retries + 1})")
|
| 189 |
+
last_exception = Exception(f"Model loading (503)")
|
| 190 |
+
continue
|
| 191 |
+
else:
|
| 192 |
+
# After max retries, try fallback model
|
| 193 |
+
logger.warning(f"Model loading (503) after {max_retries} retries, trying fallback model")
|
| 194 |
+
fallback_config = self._get_fallback_model(task_type)
|
| 195 |
+
|
| 196 |
+
# FIXED: Ensure task_type is passed in recursive call
|
| 197 |
+
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
|
| 198 |
+
else:
|
| 199 |
+
# Non-retryable HTTP errors
|
| 200 |
+
logger.error(f"HF API error: {response.status_code} - {response.text}")
|
| 201 |
+
return None
|
| 202 |
+
|
| 203 |
+
except Timeout as e:
|
| 204 |
+
last_exception = e
|
| 205 |
+
if attempt < max_retries:
|
| 206 |
+
logger.warning(f"Request timeout (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
|
| 207 |
+
continue
|
| 208 |
+
else:
|
| 209 |
+
logger.error(f"Request timeout after {max_retries} retries: {str(e)}")
|
| 210 |
+
# Try fallback model on final timeout
|
| 211 |
+
logger.warning("Attempting fallback model due to persistent timeout")
|
| 212 |
+
fallback_config = self._get_fallback_model(task_type)
|
| 213 |
+
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
|
| 214 |
+
|
| 215 |
+
except (RequestsConnectionError, RequestException) as e:
|
| 216 |
+
last_exception = e
|
| 217 |
+
if attempt < max_retries:
|
| 218 |
+
logger.warning(f"Connection error (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
|
| 219 |
+
continue
|
| 220 |
+
else:
|
| 221 |
+
logger.error(f"Connection error after {max_retries} retries: {str(e)}")
|
| 222 |
+
# Try fallback model on final connection error
|
| 223 |
+
logger.warning("Attempting fallback model due to persistent connection error")
|
| 224 |
+
fallback_config = self._get_fallback_model(task_type)
|
| 225 |
+
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
|
| 226 |
+
|
| 227 |
+
# If we exhausted all retries and didn't return
|
| 228 |
+
if last_exception:
|
| 229 |
+
logger.error(f"Failed after {max_retries} retries. Last error: {last_exception}")
|
| 230 |
return None
|
| 231 |
|
| 232 |
except ImportError:
|
orchestrator_engine.py
CHANGED
|
@@ -262,20 +262,360 @@ class MVPOrchestrator:
|
|
| 262 |
async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
|
| 263 |
"""
|
| 264 |
Create execution plan based on intent recognition
|
|
|
|
| 265 |
"""
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
"execution_order": "parallel",
|
| 270 |
"priority": "normal"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
}
|
| 272 |
|
| 273 |
async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
|
| 274 |
"""
|
| 275 |
Execute agents in parallel or sequential order based on plan
|
|
|
|
| 276 |
"""
|
| 277 |
-
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
| 280 |
def _format_final_output(self, response: dict, interaction_id: str, additional_metadata: dict = None) -> dict:
|
| 281 |
"""
|
|
|
|
| 262 |
async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
|
| 263 |
"""
|
| 264 |
Create execution plan based on intent recognition
|
| 265 |
+
Maps intent types to specific execution tasks
|
| 266 |
"""
|
| 267 |
+
primary_intent = intent_result.get('primary_intent', 'casual_conversation')
|
| 268 |
+
secondary_intents = intent_result.get('secondary_intents', [])
|
| 269 |
+
confidence = intent_result.get('confidence_scores', {}).get(primary_intent, 0.7)
|
| 270 |
+
|
| 271 |
+
# Map intent types to execution tasks
|
| 272 |
+
intent_task_mapping = {
|
| 273 |
+
"information_request": {
|
| 274 |
+
"tasks": ["information_gathering", "content_research"],
|
| 275 |
+
"execution_order": "sequential",
|
| 276 |
+
"priority": "high"
|
| 277 |
+
},
|
| 278 |
+
"task_execution": {
|
| 279 |
+
"tasks": ["task_planning", "execution_strategy"],
|
| 280 |
+
"execution_order": "sequential",
|
| 281 |
+
"priority": "high"
|
| 282 |
+
},
|
| 283 |
+
"creative_generation": {
|
| 284 |
+
"tasks": ["creative_brainstorming", "content_ideation"],
|
| 285 |
+
"execution_order": "parallel",
|
| 286 |
+
"priority": "normal"
|
| 287 |
+
},
|
| 288 |
+
"analysis_research": {
|
| 289 |
+
"tasks": ["research_analysis", "data_collection", "pattern_identification"],
|
| 290 |
+
"execution_order": "sequential",
|
| 291 |
+
"priority": "high"
|
| 292 |
+
},
|
| 293 |
+
"troubleshooting": {
|
| 294 |
+
"tasks": ["problem_analysis", "solution_research"],
|
| 295 |
+
"execution_order": "sequential",
|
| 296 |
+
"priority": "high"
|
| 297 |
+
},
|
| 298 |
+
"education_learning": {
|
| 299 |
+
"tasks": ["curriculum_planning", "educational_content"],
|
| 300 |
+
"execution_order": "sequential",
|
| 301 |
+
"priority": "normal"
|
| 302 |
+
},
|
| 303 |
+
"technical_support": {
|
| 304 |
+
"tasks": ["technical_research", "guidance_generation"],
|
| 305 |
+
"execution_order": "sequential",
|
| 306 |
+
"priority": "high"
|
| 307 |
+
},
|
| 308 |
+
"casual_conversation": {
|
| 309 |
+
"tasks": ["context_enrichment"],
|
| 310 |
+
"execution_order": "parallel",
|
| 311 |
+
"priority": "low"
|
| 312 |
+
}
|
| 313 |
+
}
|
| 314 |
+
|
| 315 |
+
# Get task plan for primary intent
|
| 316 |
+
plan = intent_task_mapping.get(primary_intent, {
|
| 317 |
+
"tasks": ["general_research"],
|
| 318 |
"execution_order": "parallel",
|
| 319 |
"priority": "normal"
|
| 320 |
+
})
|
| 321 |
+
|
| 322 |
+
# Add secondary intent tasks if confidence is high
|
| 323 |
+
if confidence > 0.7 and secondary_intents:
|
| 324 |
+
for secondary_intent in secondary_intents[:2]: # Limit to 2 secondary intents
|
| 325 |
+
secondary_plan = intent_task_mapping.get(secondary_intent)
|
| 326 |
+
if secondary_plan:
|
| 327 |
+
# Merge tasks, avoiding duplicates
|
| 328 |
+
existing_tasks = set(plan["tasks"])
|
| 329 |
+
for task in secondary_plan["tasks"]:
|
| 330 |
+
if task not in existing_tasks:
|
| 331 |
+
plan["tasks"].append(task)
|
| 332 |
+
existing_tasks.add(task)
|
| 333 |
+
|
| 334 |
+
logger.info(f"Execution plan created for intent '{primary_intent}': {len(plan['tasks'])} tasks, order={plan['execution_order']}")
|
| 335 |
+
|
| 336 |
+
return {
|
| 337 |
+
"agents_to_execute": plan["tasks"],
|
| 338 |
+
"execution_order": plan["execution_order"],
|
| 339 |
+
"priority": plan["priority"],
|
| 340 |
+
"primary_intent": primary_intent,
|
| 341 |
+
"secondary_intents": secondary_intents
|
| 342 |
}
|
| 343 |
|
| 344 |
async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
|
| 345 |
"""
|
| 346 |
Execute agents in parallel or sequential order based on plan
|
| 347 |
+
Actually executes task-specific LLM calls based on intent
|
| 348 |
"""
|
| 349 |
+
tasks = execution_plan.get("agents_to_execute", [])
|
| 350 |
+
execution_order = execution_plan.get("execution_order", "parallel")
|
| 351 |
+
primary_intent = execution_plan.get("primary_intent", "casual_conversation")
|
| 352 |
+
|
| 353 |
+
if not tasks:
|
| 354 |
+
logger.warning("No tasks to execute in execution plan")
|
| 355 |
+
return {}
|
| 356 |
+
|
| 357 |
+
logger.info(f"Executing {len(tasks)} tasks in {execution_order} order for intent '{primary_intent}'")
|
| 358 |
+
|
| 359 |
+
results = {}
|
| 360 |
+
|
| 361 |
+
# Build context summary for task execution
|
| 362 |
+
context_summary = self._build_context_summary(context)
|
| 363 |
+
|
| 364 |
+
# Task prompt templates
|
| 365 |
+
task_prompts = self._build_task_prompts(user_input, context_summary, primary_intent)
|
| 366 |
+
|
| 367 |
+
if execution_order == "parallel":
|
| 368 |
+
# Execute all tasks in parallel
|
| 369 |
+
import asyncio
|
| 370 |
+
task_coroutines = []
|
| 371 |
+
for task in tasks:
|
| 372 |
+
if task in task_prompts:
|
| 373 |
+
coro = self._execute_single_task(task, task_prompts[task])
|
| 374 |
+
task_coroutines.append((task, coro))
|
| 375 |
+
else:
|
| 376 |
+
logger.warning(f"No prompt template for task: {task}")
|
| 377 |
+
|
| 378 |
+
# Execute all tasks concurrently
|
| 379 |
+
if task_coroutines:
|
| 380 |
+
task_results = await asyncio.gather(
|
| 381 |
+
*[coro for _, coro in task_coroutines],
|
| 382 |
+
return_exceptions=True
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# Map results back to task names
|
| 386 |
+
for (task, _), result in zip(task_coroutines, task_results):
|
| 387 |
+
if isinstance(result, Exception):
|
| 388 |
+
logger.error(f"Task {task} failed: {result}")
|
| 389 |
+
results[task] = {"error": str(result), "status": "failed"}
|
| 390 |
+
else:
|
| 391 |
+
results[task] = result
|
| 392 |
+
logger.info(f"Task {task} completed: {len(str(result))} chars")
|
| 393 |
+
else:
|
| 394 |
+
# Execute tasks sequentially
|
| 395 |
+
previous_results = {}
|
| 396 |
+
for task in tasks:
|
| 397 |
+
if task in task_prompts:
|
| 398 |
+
# Pass previous results to sequential tasks for context
|
| 399 |
+
enhanced_prompt = task_prompts[task]
|
| 400 |
+
if previous_results:
|
| 401 |
+
enhanced_prompt += f"\n\nPrevious task results: {str(previous_results)}"
|
| 402 |
+
|
| 403 |
+
try:
|
| 404 |
+
result = await self._execute_single_task(task, enhanced_prompt)
|
| 405 |
+
results[task] = result
|
| 406 |
+
previous_results[task] = result
|
| 407 |
+
logger.info(f"Task {task} completed: {len(str(result))} chars")
|
| 408 |
+
except Exception as e:
|
| 409 |
+
logger.error(f"Task {task} failed: {e}")
|
| 410 |
+
results[task] = {"error": str(e), "status": "failed"}
|
| 411 |
+
previous_results[task] = results[task]
|
| 412 |
+
else:
|
| 413 |
+
logger.warning(f"No prompt template for task: {task}")
|
| 414 |
+
|
| 415 |
+
logger.info(f"Agent execution complete: {len(results)} results collected")
|
| 416 |
+
return results
|
| 417 |
+
|
| 418 |
+
def _build_context_summary(self, context: dict) -> str:
|
| 419 |
+
"""Build a concise summary of context for task execution"""
|
| 420 |
+
summary_parts = []
|
| 421 |
+
|
| 422 |
+
# Extract interaction contexts
|
| 423 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 424 |
+
if interaction_contexts:
|
| 425 |
+
recent_summaries = [ic.get('summary', '') for ic in interaction_contexts[-3:]]
|
| 426 |
+
if recent_summaries:
|
| 427 |
+
summary_parts.append(f"Recent conversation topics: {', '.join(recent_summaries)}")
|
| 428 |
+
|
| 429 |
+
# Extract user context
|
| 430 |
+
user_context = context.get('user_context', '')
|
| 431 |
+
if user_context:
|
| 432 |
+
summary_parts.append(f"User background: {user_context[:200]}")
|
| 433 |
+
|
| 434 |
+
return " | ".join(summary_parts) if summary_parts else "No prior context"
|
| 435 |
+
|
| 436 |
+
def _build_task_prompts(self, user_input: str, context_summary: str, primary_intent: str) -> dict:
|
| 437 |
+
"""Build task-specific prompts for execution"""
|
| 438 |
+
|
| 439 |
+
base_context = f"User Query: {user_input}\nContext: {context_summary}"
|
| 440 |
+
|
| 441 |
+
prompts = {
|
| 442 |
+
"information_gathering": f"""
|
| 443 |
+
{base_context}
|
| 444 |
+
|
| 445 |
+
Task: Gather comprehensive, accurate information relevant to the user's query.
|
| 446 |
+
Focus on facts, definitions, explanations, and verified information.
|
| 447 |
+
Structure the information clearly and cite key points.
|
| 448 |
+
""",
|
| 449 |
+
|
| 450 |
+
"content_research": f"""
|
| 451 |
+
{base_context}
|
| 452 |
+
|
| 453 |
+
Task: Research and compile detailed content about the topic.
|
| 454 |
+
Include multiple perspectives, current information, and relevant examples.
|
| 455 |
+
Organize findings logically with clear sections.
|
| 456 |
+
""",
|
| 457 |
+
|
| 458 |
+
"task_planning": f"""
|
| 459 |
+
{base_context}
|
| 460 |
+
|
| 461 |
+
Task: Create a detailed execution plan for the requested task.
|
| 462 |
+
Break down into clear steps, identify requirements, and outline expected outcomes.
|
| 463 |
+
Consider potential challenges and solutions.
|
| 464 |
+
""",
|
| 465 |
+
|
| 466 |
+
"execution_strategy": f"""
|
| 467 |
+
{base_context}
|
| 468 |
+
|
| 469 |
+
Task: Develop a strategic approach for task execution.
|
| 470 |
+
Define methodology, best practices, and implementation considerations.
|
| 471 |
+
Provide actionable guidance with clear priorities.
|
| 472 |
+
""",
|
| 473 |
+
|
| 474 |
+
"creative_brainstorming": f"""
|
| 475 |
+
{base_context}
|
| 476 |
+
|
| 477 |
+
Task: Generate creative ideas and approaches for content creation.
|
| 478 |
+
Explore different angles, styles, and formats.
|
| 479 |
+
Provide diverse creative options with implementation suggestions.
|
| 480 |
+
""",
|
| 481 |
+
|
| 482 |
+
"content_ideation": f"""
|
| 483 |
+
{base_context}
|
| 484 |
+
|
| 485 |
+
Task: Develop content concepts and detailed ideation.
|
| 486 |
+
Create outlines, themes, and structural frameworks.
|
| 487 |
+
Suggest variations and refinement paths.
|
| 488 |
+
""",
|
| 489 |
+
|
| 490 |
+
"research_analysis": f"""
|
| 491 |
+
{base_context}
|
| 492 |
+
|
| 493 |
+
Task: Conduct thorough research analysis on the topic.
|
| 494 |
+
Identify key findings, trends, patterns, and insights.
|
| 495 |
+
Analyze different perspectives and methodologies.
|
| 496 |
+
""",
|
| 497 |
+
|
| 498 |
+
"data_collection": f"""
|
| 499 |
+
{base_context}
|
| 500 |
+
|
| 501 |
+
Task: Collect and organize relevant data points and evidence.
|
| 502 |
+
Gather statistics, examples, case studies, and supporting information.
|
| 503 |
+
Structure data for easy analysis and reference.
|
| 504 |
+
""",
|
| 505 |
+
|
| 506 |
+
"pattern_identification": f"""
|
| 507 |
+
{base_context}
|
| 508 |
+
|
| 509 |
+
Task: Identify patterns, correlations, and significant relationships.
|
| 510 |
+
Analyze trends, cause-effect relationships, and underlying structures.
|
| 511 |
+
Provide insights based on pattern recognition.
|
| 512 |
+
""",
|
| 513 |
+
|
| 514 |
+
"problem_analysis": f"""
|
| 515 |
+
{base_context}
|
| 516 |
+
|
| 517 |
+
Task: Analyze the problem in detail.
|
| 518 |
+
Identify root causes, contributing factors, and constraints.
|
| 519 |
+
Break down the problem into components for systematic resolution.
|
| 520 |
+
""",
|
| 521 |
+
|
| 522 |
+
"solution_research": f"""
|
| 523 |
+
{base_context}
|
| 524 |
+
|
| 525 |
+
Task: Research and evaluate potential solutions.
|
| 526 |
+
Compare approaches, assess pros/cons, and recommend best practices.
|
| 527 |
+
Consider implementation feasibility and effectiveness.
|
| 528 |
+
""",
|
| 529 |
+
|
| 530 |
+
"curriculum_planning": f"""
|
| 531 |
+
{base_context}
|
| 532 |
+
|
| 533 |
+
Task: Design educational curriculum and learning path.
|
| 534 |
+
Structure content progressively, define learning objectives, and suggest resources.
|
| 535 |
+
Create a comprehensive learning framework.
|
| 536 |
+
""",
|
| 537 |
+
|
| 538 |
+
"educational_content": f"""
|
| 539 |
+
{base_context}
|
| 540 |
+
|
| 541 |
+
Task: Generate educational content with clear explanations.
|
| 542 |
+
Use teaching methods, examples, analogies, and progressive complexity.
|
| 543 |
+
Make content accessible and engaging for learning.
|
| 544 |
+
""",
|
| 545 |
+
|
| 546 |
+
"technical_research": f"""
|
| 547 |
+
{base_context}
|
| 548 |
+
|
| 549 |
+
Task: Research technical aspects and solutions.
|
| 550 |
+
Gather technical documentation, best practices, and implementation details.
|
| 551 |
+
Structure technical information clearly with practical guidance.
|
| 552 |
+
""",
|
| 553 |
+
|
| 554 |
+
"guidance_generation": f"""
|
| 555 |
+
{base_context}
|
| 556 |
+
|
| 557 |
+
Task: Generate step-by-step guidance and instructions.
|
| 558 |
+
Create clear, actionable steps with explanations and troubleshooting tips.
|
| 559 |
+
Ensure guidance is comprehensive and easy to follow.
|
| 560 |
+
""",
|
| 561 |
+
|
| 562 |
+
"context_enrichment": f"""
|
| 563 |
+
{base_context}
|
| 564 |
+
|
| 565 |
+
Task: Enrich the conversation with relevant context and insights.
|
| 566 |
+
Add helpful background information, connections to previous topics, and engaging details.
|
| 567 |
+
Enhance understanding and engagement.
|
| 568 |
+
""",
|
| 569 |
+
|
| 570 |
+
"general_research": f"""
|
| 571 |
+
{base_context}
|
| 572 |
+
|
| 573 |
+
Task: Conduct general research and information gathering.
|
| 574 |
+
Compile relevant information, insights, and useful details about the topic.
|
| 575 |
+
Organize findings for clear presentation.
|
| 576 |
+
"""
|
| 577 |
+
}
|
| 578 |
+
|
| 579 |
+
return prompts
|
| 580 |
+
|
| 581 |
+
async def _execute_single_task(self, task_name: str, prompt: str) -> dict:
|
| 582 |
+
"""Execute a single task using the LLM router"""
|
| 583 |
+
try:
|
| 584 |
+
logger.debug(f"Executing task: {task_name}")
|
| 585 |
+
logger.debug(f"Task prompt length: {len(prompt)}")
|
| 586 |
+
|
| 587 |
+
# Use general reasoning for task execution
|
| 588 |
+
result = await self.llm_router.route_inference(
|
| 589 |
+
task_type="general_reasoning",
|
| 590 |
+
prompt=prompt,
|
| 591 |
+
max_tokens=2000,
|
| 592 |
+
temperature=0.7
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
if result:
|
| 596 |
+
return {
|
| 597 |
+
"task": task_name,
|
| 598 |
+
"status": "completed",
|
| 599 |
+
"content": result,
|
| 600 |
+
"content_length": len(str(result))
|
| 601 |
+
}
|
| 602 |
+
else:
|
| 603 |
+
logger.warning(f"Task {task_name} returned empty result")
|
| 604 |
+
return {
|
| 605 |
+
"task": task_name,
|
| 606 |
+
"status": "empty",
|
| 607 |
+
"content": "",
|
| 608 |
+
"content_length": 0
|
| 609 |
+
}
|
| 610 |
+
|
| 611 |
+
except Exception as e:
|
| 612 |
+
logger.error(f"Error executing task {task_name}: {e}", exc_info=True)
|
| 613 |
+
return {
|
| 614 |
+
"task": task_name,
|
| 615 |
+
"status": "error",
|
| 616 |
+
"error": str(e),
|
| 617 |
+
"content": ""
|
| 618 |
+
}
|
| 619 |
|
| 620 |
def _format_final_output(self, response: dict, interaction_id: str, additional_metadata: dict = None) -> dict:
|
| 621 |
"""
|
src/llm_router.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
# llm_router.py - FIXED VERSION
|
| 2 |
import logging
|
|
|
|
| 3 |
from .models_config import LLM_CONFIG
|
| 4 |
|
| 5 |
logger = logging.getLogger(__name__)
|
|
@@ -73,12 +74,19 @@ class LLMRouter:
|
|
| 73 |
async def _call_hf_endpoint(self, model_config: dict, prompt: str, task_type: str, **kwargs):
|
| 74 |
"""
|
| 75 |
FIXED: Make actual call to Hugging Face Chat Completions API
|
| 76 |
-
Uses the correct chat completions protocol
|
| 77 |
|
| 78 |
IMPORTANT: task_type parameter is now properly included in the method signature
|
| 79 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
try:
|
| 81 |
import requests
|
|
|
|
| 82 |
|
| 83 |
model_id = model_config["model_id"]
|
| 84 |
|
|
@@ -125,51 +133,100 @@ class LLMRouter:
|
|
| 125 |
"Content-Type": "application/json"
|
| 126 |
}
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
if 'choices' in result and len(result['choices']) > 0:
|
| 138 |
-
generated_text = result['choices'][0]['message']['content']
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
return None
|
| 143 |
|
| 144 |
-
|
| 145 |
-
logger.info("=" * 80)
|
| 146 |
-
logger.info("COMPLETE LLM API RESPONSE:")
|
| 147 |
-
logger.info("=" * 80)
|
| 148 |
-
logger.info(f"Model: {model_id}")
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
return None
|
| 174 |
|
| 175 |
except ImportError:
|
|
|
|
| 1 |
# llm_router.py - FIXED VERSION
|
| 2 |
import logging
|
| 3 |
+
import asyncio
|
| 4 |
from .models_config import LLM_CONFIG
|
| 5 |
|
| 6 |
logger = logging.getLogger(__name__)
|
|
|
|
| 74 |
async def _call_hf_endpoint(self, model_config: dict, prompt: str, task_type: str, **kwargs):
|
| 75 |
"""
|
| 76 |
FIXED: Make actual call to Hugging Face Chat Completions API
|
| 77 |
+
Uses the correct chat completions protocol with retry logic and exponential backoff
|
| 78 |
|
| 79 |
IMPORTANT: task_type parameter is now properly included in the method signature
|
| 80 |
"""
|
| 81 |
+
# Retry configuration
|
| 82 |
+
max_retries = kwargs.get('max_retries', 3)
|
| 83 |
+
initial_delay = kwargs.get('initial_delay', 1.0) # Start with 1 second
|
| 84 |
+
max_delay = kwargs.get('max_delay', 16.0) # Cap at 16 seconds
|
| 85 |
+
timeout = kwargs.get('timeout', 30)
|
| 86 |
+
|
| 87 |
try:
|
| 88 |
import requests
|
| 89 |
+
from requests.exceptions import Timeout, RequestException, ConnectionError as RequestsConnectionError
|
| 90 |
|
| 91 |
model_id = model_config["model_id"]
|
| 92 |
|
|
|
|
| 133 |
"Content-Type": "application/json"
|
| 134 |
}
|
| 135 |
|
| 136 |
+
# Retry logic with exponential backoff
|
| 137 |
+
last_exception = None
|
| 138 |
+
for attempt in range(max_retries + 1):
|
| 139 |
+
try:
|
| 140 |
+
if attempt > 0:
|
| 141 |
+
# Calculate exponential backoff delay
|
| 142 |
+
delay = min(initial_delay * (2 ** (attempt - 1)), max_delay)
|
| 143 |
+
logger.warning(f"Retry attempt {attempt}/{max_retries} after {delay:.1f}s delay (exponential backoff)")
|
| 144 |
+
await asyncio.sleep(delay)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
+
logger.info(f"Sending request to: {api_url} (attempt {attempt + 1}/{max_retries + 1})")
|
| 147 |
+
logger.debug(f"Payload: {payload}")
|
|
|
|
| 148 |
|
| 149 |
+
response = requests.post(api_url, json=payload, headers=headers, timeout=timeout)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
if response.status_code == 200:
|
| 152 |
+
result = response.json()
|
| 153 |
+
logger.debug(f"Raw response: {result}")
|
| 154 |
+
|
| 155 |
+
if 'choices' in result and len(result['choices']) > 0:
|
| 156 |
+
generated_text = result['choices'][0]['message']['content']
|
| 157 |
+
|
| 158 |
+
if not generated_text or generated_text.strip() == "":
|
| 159 |
+
logger.warning(f"Empty or invalid response, using fallback")
|
| 160 |
+
return None
|
| 161 |
+
|
| 162 |
+
if attempt > 0:
|
| 163 |
+
logger.info(f"Successfully retrieved response after {attempt} retry attempts")
|
| 164 |
+
|
| 165 |
+
logger.info(f"HF API returned response (length: {len(generated_text)})")
|
| 166 |
+
logger.info("=" * 80)
|
| 167 |
+
logger.info("COMPLETE LLM API RESPONSE:")
|
| 168 |
+
logger.info("=" * 80)
|
| 169 |
+
logger.info(f"Model: {model_id}")
|
| 170 |
+
|
| 171 |
+
# FIXED: task_type is now properly available
|
| 172 |
+
logger.info(f"Task Type: {task_type}")
|
| 173 |
+
logger.info(f"Response Length: {len(generated_text)} characters")
|
| 174 |
+
logger.info("-" * 40)
|
| 175 |
+
logger.info("FULL RESPONSE CONTENT:")
|
| 176 |
+
logger.info("-" * 40)
|
| 177 |
+
logger.info(generated_text)
|
| 178 |
+
logger.info("-" * 40)
|
| 179 |
+
logger.info("END OF LLM RESPONSE")
|
| 180 |
+
logger.info("=" * 80)
|
| 181 |
+
return generated_text
|
| 182 |
+
else:
|
| 183 |
+
logger.error(f"Unexpected response format: {result}")
|
| 184 |
+
return None
|
| 185 |
+
elif response.status_code == 503:
|
| 186 |
+
# Model is loading - this is retryable
|
| 187 |
+
if attempt < max_retries:
|
| 188 |
+
logger.warning(f"Model loading (503), will retry (attempt {attempt + 1}/{max_retries + 1})")
|
| 189 |
+
last_exception = Exception(f"Model loading (503)")
|
| 190 |
+
continue
|
| 191 |
+
else:
|
| 192 |
+
# After max retries, try fallback model
|
| 193 |
+
logger.warning(f"Model loading (503) after {max_retries} retries, trying fallback model")
|
| 194 |
+
fallback_config = self._get_fallback_model(task_type)
|
| 195 |
+
|
| 196 |
+
# FIXED: Ensure task_type is passed in recursive call
|
| 197 |
+
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
|
| 198 |
+
else:
|
| 199 |
+
# Non-retryable HTTP errors
|
| 200 |
+
logger.error(f"HF API error: {response.status_code} - {response.text}")
|
| 201 |
+
return None
|
| 202 |
+
|
| 203 |
+
except Timeout as e:
|
| 204 |
+
last_exception = e
|
| 205 |
+
if attempt < max_retries:
|
| 206 |
+
logger.warning(f"Request timeout (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
|
| 207 |
+
continue
|
| 208 |
+
else:
|
| 209 |
+
logger.error(f"Request timeout after {max_retries} retries: {str(e)}")
|
| 210 |
+
# Try fallback model on final timeout
|
| 211 |
+
logger.warning("Attempting fallback model due to persistent timeout")
|
| 212 |
+
fallback_config = self._get_fallback_model(task_type)
|
| 213 |
+
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
|
| 214 |
+
|
| 215 |
+
except (RequestsConnectionError, RequestException) as e:
|
| 216 |
+
last_exception = e
|
| 217 |
+
if attempt < max_retries:
|
| 218 |
+
logger.warning(f"Connection error (attempt {attempt + 1}/{max_retries + 1}): {str(e)}")
|
| 219 |
+
continue
|
| 220 |
+
else:
|
| 221 |
+
logger.error(f"Connection error after {max_retries} retries: {str(e)}")
|
| 222 |
+
# Try fallback model on final connection error
|
| 223 |
+
logger.warning("Attempting fallback model due to persistent connection error")
|
| 224 |
+
fallback_config = self._get_fallback_model(task_type)
|
| 225 |
+
return await self._call_hf_endpoint(fallback_config, prompt, task_type, **kwargs)
|
| 226 |
+
|
| 227 |
+
# If we exhausted all retries and didn't return
|
| 228 |
+
if last_exception:
|
| 229 |
+
logger.error(f"Failed after {max_retries} retries. Last error: {last_exception}")
|
| 230 |
return None
|
| 231 |
|
| 232 |
except ImportError:
|
src/orchestrator_engine.py
CHANGED
|
@@ -412,20 +412,359 @@ This response has been flagged for potential safety concerns:
|
|
| 412 |
async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
|
| 413 |
"""
|
| 414 |
Create execution plan based on intent recognition
|
|
|
|
| 415 |
"""
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 419 |
"execution_order": "parallel",
|
| 420 |
"priority": "normal"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
}
|
| 422 |
|
| 423 |
async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
|
| 424 |
"""
|
| 425 |
Execute agents in parallel or sequential order based on plan
|
|
|
|
| 426 |
"""
|
| 427 |
-
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
def _format_final_output(self, response: dict, interaction_id: str, additional_metadata: dict = None) -> dict:
|
| 431 |
"""
|
|
|
|
| 412 |
async def _create_execution_plan(self, intent_result: dict, context: dict) -> dict:
|
| 413 |
"""
|
| 414 |
Create execution plan based on intent recognition
|
| 415 |
+
Maps intent types to specific execution tasks
|
| 416 |
"""
|
| 417 |
+
primary_intent = intent_result.get('primary_intent', 'casual_conversation')
|
| 418 |
+
secondary_intents = intent_result.get('secondary_intents', [])
|
| 419 |
+
confidence = intent_result.get('confidence_scores', {}).get(primary_intent, 0.7)
|
| 420 |
+
|
| 421 |
+
# Map intent types to execution tasks
|
| 422 |
+
intent_task_mapping = {
|
| 423 |
+
"information_request": {
|
| 424 |
+
"tasks": ["information_gathering", "content_research"],
|
| 425 |
+
"execution_order": "sequential",
|
| 426 |
+
"priority": "high"
|
| 427 |
+
},
|
| 428 |
+
"task_execution": {
|
| 429 |
+
"tasks": ["task_planning", "execution_strategy"],
|
| 430 |
+
"execution_order": "sequential",
|
| 431 |
+
"priority": "high"
|
| 432 |
+
},
|
| 433 |
+
"creative_generation": {
|
| 434 |
+
"tasks": ["creative_brainstorming", "content_ideation"],
|
| 435 |
+
"execution_order": "parallel",
|
| 436 |
+
"priority": "normal"
|
| 437 |
+
},
|
| 438 |
+
"analysis_research": {
|
| 439 |
+
"tasks": ["research_analysis", "data_collection", "pattern_identification"],
|
| 440 |
+
"execution_order": "sequential",
|
| 441 |
+
"priority": "high"
|
| 442 |
+
},
|
| 443 |
+
"troubleshooting": {
|
| 444 |
+
"tasks": ["problem_analysis", "solution_research"],
|
| 445 |
+
"execution_order": "sequential",
|
| 446 |
+
"priority": "high"
|
| 447 |
+
},
|
| 448 |
+
"education_learning": {
|
| 449 |
+
"tasks": ["curriculum_planning", "educational_content"],
|
| 450 |
+
"execution_order": "sequential",
|
| 451 |
+
"priority": "normal"
|
| 452 |
+
},
|
| 453 |
+
"technical_support": {
|
| 454 |
+
"tasks": ["technical_research", "guidance_generation"],
|
| 455 |
+
"execution_order": "sequential",
|
| 456 |
+
"priority": "high"
|
| 457 |
+
},
|
| 458 |
+
"casual_conversation": {
|
| 459 |
+
"tasks": ["context_enrichment"],
|
| 460 |
+
"execution_order": "parallel",
|
| 461 |
+
"priority": "low"
|
| 462 |
+
}
|
| 463 |
+
}
|
| 464 |
+
|
| 465 |
+
# Get task plan for primary intent
|
| 466 |
+
plan = intent_task_mapping.get(primary_intent, {
|
| 467 |
+
"tasks": ["general_research"],
|
| 468 |
"execution_order": "parallel",
|
| 469 |
"priority": "normal"
|
| 470 |
+
})
|
| 471 |
+
|
| 472 |
+
# Add secondary intent tasks if confidence is high
|
| 473 |
+
if confidence > 0.7 and secondary_intents:
|
| 474 |
+
for secondary_intent in secondary_intents[:2]: # Limit to 2 secondary intents
|
| 475 |
+
secondary_plan = intent_task_mapping.get(secondary_intent)
|
| 476 |
+
if secondary_plan:
|
| 477 |
+
# Merge tasks, avoiding duplicates
|
| 478 |
+
existing_tasks = set(plan["tasks"])
|
| 479 |
+
for task in secondary_plan["tasks"]:
|
| 480 |
+
if task not in existing_tasks:
|
| 481 |
+
plan["tasks"].append(task)
|
| 482 |
+
existing_tasks.add(task)
|
| 483 |
+
|
| 484 |
+
logger.info(f"Execution plan created for intent '{primary_intent}': {len(plan['tasks'])} tasks, order={plan['execution_order']}")
|
| 485 |
+
|
| 486 |
+
return {
|
| 487 |
+
"agents_to_execute": plan["tasks"],
|
| 488 |
+
"execution_order": plan["execution_order"],
|
| 489 |
+
"priority": plan["priority"],
|
| 490 |
+
"primary_intent": primary_intent,
|
| 491 |
+
"secondary_intents": secondary_intents
|
| 492 |
}
|
| 493 |
|
| 494 |
async def _execute_agents(self, execution_plan: dict, user_input: str, context: dict) -> dict:
|
| 495 |
"""
|
| 496 |
Execute agents in parallel or sequential order based on plan
|
| 497 |
+
Actually executes task-specific LLM calls based on intent
|
| 498 |
"""
|
| 499 |
+
tasks = execution_plan.get("agents_to_execute", [])
|
| 500 |
+
execution_order = execution_plan.get("execution_order", "parallel")
|
| 501 |
+
primary_intent = execution_plan.get("primary_intent", "casual_conversation")
|
| 502 |
+
|
| 503 |
+
if not tasks:
|
| 504 |
+
logger.warning("No tasks to execute in execution plan")
|
| 505 |
+
return {}
|
| 506 |
+
|
| 507 |
+
logger.info(f"Executing {len(tasks)} tasks in {execution_order} order for intent '{primary_intent}'")
|
| 508 |
+
|
| 509 |
+
results = {}
|
| 510 |
+
|
| 511 |
+
# Build context summary for task execution
|
| 512 |
+
context_summary = self._build_context_summary(context)
|
| 513 |
+
|
| 514 |
+
# Task prompt templates
|
| 515 |
+
task_prompts = self._build_task_prompts(user_input, context_summary, primary_intent)
|
| 516 |
+
|
| 517 |
+
if execution_order == "parallel":
|
| 518 |
+
# Execute all tasks in parallel
|
| 519 |
+
task_coroutines = []
|
| 520 |
+
for task in tasks:
|
| 521 |
+
if task in task_prompts:
|
| 522 |
+
coro = self._execute_single_task(task, task_prompts[task])
|
| 523 |
+
task_coroutines.append((task, coro))
|
| 524 |
+
else:
|
| 525 |
+
logger.warning(f"No prompt template for task: {task}")
|
| 526 |
+
|
| 527 |
+
# Execute all tasks concurrently
|
| 528 |
+
if task_coroutines:
|
| 529 |
+
task_results = await asyncio.gather(
|
| 530 |
+
*[coro for _, coro in task_coroutines],
|
| 531 |
+
return_exceptions=True
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
# Map results back to task names
|
| 535 |
+
for (task, _), result in zip(task_coroutines, task_results):
|
| 536 |
+
if isinstance(result, Exception):
|
| 537 |
+
logger.error(f"Task {task} failed: {result}")
|
| 538 |
+
results[task] = {"error": str(result), "status": "failed"}
|
| 539 |
+
else:
|
| 540 |
+
results[task] = result
|
| 541 |
+
logger.info(f"Task {task} completed: {len(str(result))} chars")
|
| 542 |
+
else:
|
| 543 |
+
# Execute tasks sequentially
|
| 544 |
+
previous_results = {}
|
| 545 |
+
for task in tasks:
|
| 546 |
+
if task in task_prompts:
|
| 547 |
+
# Pass previous results to sequential tasks for context
|
| 548 |
+
enhanced_prompt = task_prompts[task]
|
| 549 |
+
if previous_results:
|
| 550 |
+
enhanced_prompt += f"\n\nPrevious task results: {str(previous_results)}"
|
| 551 |
+
|
| 552 |
+
try:
|
| 553 |
+
result = await self._execute_single_task(task, enhanced_prompt)
|
| 554 |
+
results[task] = result
|
| 555 |
+
previous_results[task] = result
|
| 556 |
+
logger.info(f"Task {task} completed: {len(str(result))} chars")
|
| 557 |
+
except Exception as e:
|
| 558 |
+
logger.error(f"Task {task} failed: {e}")
|
| 559 |
+
results[task] = {"error": str(e), "status": "failed"}
|
| 560 |
+
previous_results[task] = results[task]
|
| 561 |
+
else:
|
| 562 |
+
logger.warning(f"No prompt template for task: {task}")
|
| 563 |
+
|
| 564 |
+
logger.info(f"Agent execution complete: {len(results)} results collected")
|
| 565 |
+
return results
|
| 566 |
+
|
| 567 |
+
def _build_context_summary(self, context: dict) -> str:
|
| 568 |
+
"""Build a concise summary of context for task execution"""
|
| 569 |
+
summary_parts = []
|
| 570 |
+
|
| 571 |
+
# Extract interaction contexts
|
| 572 |
+
interaction_contexts = context.get('interaction_contexts', [])
|
| 573 |
+
if interaction_contexts:
|
| 574 |
+
recent_summaries = [ic.get('summary', '') for ic in interaction_contexts[-3:]]
|
| 575 |
+
if recent_summaries:
|
| 576 |
+
summary_parts.append(f"Recent conversation topics: {', '.join(recent_summaries)}")
|
| 577 |
+
|
| 578 |
+
# Extract user context
|
| 579 |
+
user_context = context.get('user_context', '')
|
| 580 |
+
if user_context:
|
| 581 |
+
summary_parts.append(f"User background: {user_context[:200]}")
|
| 582 |
+
|
| 583 |
+
return " | ".join(summary_parts) if summary_parts else "No prior context"
|
| 584 |
+
|
| 585 |
+
def _build_task_prompts(self, user_input: str, context_summary: str, primary_intent: str) -> dict:
|
| 586 |
+
"""Build task-specific prompts for execution"""
|
| 587 |
+
|
| 588 |
+
base_context = f"User Query: {user_input}\nContext: {context_summary}"
|
| 589 |
+
|
| 590 |
+
prompts = {
|
| 591 |
+
"information_gathering": f"""
|
| 592 |
+
{base_context}
|
| 593 |
+
|
| 594 |
+
Task: Gather comprehensive, accurate information relevant to the user's query.
|
| 595 |
+
Focus on facts, definitions, explanations, and verified information.
|
| 596 |
+
Structure the information clearly and cite key points.
|
| 597 |
+
""",
|
| 598 |
+
|
| 599 |
+
"content_research": f"""
|
| 600 |
+
{base_context}
|
| 601 |
+
|
| 602 |
+
Task: Research and compile detailed content about the topic.
|
| 603 |
+
Include multiple perspectives, current information, and relevant examples.
|
| 604 |
+
Organize findings logically with clear sections.
|
| 605 |
+
""",
|
| 606 |
+
|
| 607 |
+
"task_planning": f"""
|
| 608 |
+
{base_context}
|
| 609 |
+
|
| 610 |
+
Task: Create a detailed execution plan for the requested task.
|
| 611 |
+
Break down into clear steps, identify requirements, and outline expected outcomes.
|
| 612 |
+
Consider potential challenges and solutions.
|
| 613 |
+
""",
|
| 614 |
+
|
| 615 |
+
"execution_strategy": f"""
|
| 616 |
+
{base_context}
|
| 617 |
+
|
| 618 |
+
Task: Develop a strategic approach for task execution.
|
| 619 |
+
Define methodology, best practices, and implementation considerations.
|
| 620 |
+
Provide actionable guidance with clear priorities.
|
| 621 |
+
""",
|
| 622 |
+
|
| 623 |
+
"creative_brainstorming": f"""
|
| 624 |
+
{base_context}
|
| 625 |
+
|
| 626 |
+
Task: Generate creative ideas and approaches for content creation.
|
| 627 |
+
Explore different angles, styles, and formats.
|
| 628 |
+
Provide diverse creative options with implementation suggestions.
|
| 629 |
+
""",
|
| 630 |
+
|
| 631 |
+
"content_ideation": f"""
|
| 632 |
+
{base_context}
|
| 633 |
+
|
| 634 |
+
Task: Develop content concepts and detailed ideation.
|
| 635 |
+
Create outlines, themes, and structural frameworks.
|
| 636 |
+
Suggest variations and refinement paths.
|
| 637 |
+
""",
|
| 638 |
+
|
| 639 |
+
"research_analysis": f"""
|
| 640 |
+
{base_context}
|
| 641 |
+
|
| 642 |
+
Task: Conduct thorough research analysis on the topic.
|
| 643 |
+
Identify key findings, trends, patterns, and insights.
|
| 644 |
+
Analyze different perspectives and methodologies.
|
| 645 |
+
""",
|
| 646 |
+
|
| 647 |
+
"data_collection": f"""
|
| 648 |
+
{base_context}
|
| 649 |
+
|
| 650 |
+
Task: Collect and organize relevant data points and evidence.
|
| 651 |
+
Gather statistics, examples, case studies, and supporting information.
|
| 652 |
+
Structure data for easy analysis and reference.
|
| 653 |
+
""",
|
| 654 |
+
|
| 655 |
+
"pattern_identification": f"""
|
| 656 |
+
{base_context}
|
| 657 |
+
|
| 658 |
+
Task: Identify patterns, correlations, and significant relationships.
|
| 659 |
+
Analyze trends, cause-effect relationships, and underlying structures.
|
| 660 |
+
Provide insights based on pattern recognition.
|
| 661 |
+
""",
|
| 662 |
+
|
| 663 |
+
"problem_analysis": f"""
|
| 664 |
+
{base_context}
|
| 665 |
+
|
| 666 |
+
Task: Analyze the problem in detail.
|
| 667 |
+
Identify root causes, contributing factors, and constraints.
|
| 668 |
+
Break down the problem into components for systematic resolution.
|
| 669 |
+
""",
|
| 670 |
+
|
| 671 |
+
"solution_research": f"""
|
| 672 |
+
{base_context}
|
| 673 |
+
|
| 674 |
+
Task: Research and evaluate potential solutions.
|
| 675 |
+
Compare approaches, assess pros/cons, and recommend best practices.
|
| 676 |
+
Consider implementation feasibility and effectiveness.
|
| 677 |
+
""",
|
| 678 |
+
|
| 679 |
+
"curriculum_planning": f"""
|
| 680 |
+
{base_context}
|
| 681 |
+
|
| 682 |
+
Task: Design educational curriculum and learning path.
|
| 683 |
+
Structure content progressively, define learning objectives, and suggest resources.
|
| 684 |
+
Create a comprehensive learning framework.
|
| 685 |
+
""",
|
| 686 |
+
|
| 687 |
+
"educational_content": f"""
|
| 688 |
+
{base_context}
|
| 689 |
+
|
| 690 |
+
Task: Generate educational content with clear explanations.
|
| 691 |
+
Use teaching methods, examples, analogies, and progressive complexity.
|
| 692 |
+
Make content accessible and engaging for learning.
|
| 693 |
+
""",
|
| 694 |
+
|
| 695 |
+
"technical_research": f"""
|
| 696 |
+
{base_context}
|
| 697 |
+
|
| 698 |
+
Task: Research technical aspects and solutions.
|
| 699 |
+
Gather technical documentation, best practices, and implementation details.
|
| 700 |
+
Structure technical information clearly with practical guidance.
|
| 701 |
+
""",
|
| 702 |
+
|
| 703 |
+
"guidance_generation": f"""
|
| 704 |
+
{base_context}
|
| 705 |
+
|
| 706 |
+
Task: Generate step-by-step guidance and instructions.
|
| 707 |
+
Create clear, actionable steps with explanations and troubleshooting tips.
|
| 708 |
+
Ensure guidance is comprehensive and easy to follow.
|
| 709 |
+
""",
|
| 710 |
+
|
| 711 |
+
"context_enrichment": f"""
|
| 712 |
+
{base_context}
|
| 713 |
+
|
| 714 |
+
Task: Enrich the conversation with relevant context and insights.
|
| 715 |
+
Add helpful background information, connections to previous topics, and engaging details.
|
| 716 |
+
Enhance understanding and engagement.
|
| 717 |
+
""",
|
| 718 |
+
|
| 719 |
+
"general_research": f"""
|
| 720 |
+
{base_context}
|
| 721 |
+
|
| 722 |
+
Task: Conduct general research and information gathering.
|
| 723 |
+
Compile relevant information, insights, and useful details about the topic.
|
| 724 |
+
Organize findings for clear presentation.
|
| 725 |
+
"""
|
| 726 |
+
}
|
| 727 |
+
|
| 728 |
+
return prompts
|
| 729 |
+
|
| 730 |
+
async def _execute_single_task(self, task_name: str, prompt: str) -> dict:
|
| 731 |
+
"""Execute a single task using the LLM router"""
|
| 732 |
+
try:
|
| 733 |
+
logger.debug(f"Executing task: {task_name}")
|
| 734 |
+
logger.debug(f"Task prompt length: {len(prompt)}")
|
| 735 |
+
|
| 736 |
+
# Use general reasoning for task execution
|
| 737 |
+
result = await self.llm_router.route_inference(
|
| 738 |
+
task_type="general_reasoning",
|
| 739 |
+
prompt=prompt,
|
| 740 |
+
max_tokens=2000,
|
| 741 |
+
temperature=0.7
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
if result:
|
| 745 |
+
return {
|
| 746 |
+
"task": task_name,
|
| 747 |
+
"status": "completed",
|
| 748 |
+
"content": result,
|
| 749 |
+
"content_length": len(str(result))
|
| 750 |
+
}
|
| 751 |
+
else:
|
| 752 |
+
logger.warning(f"Task {task_name} returned empty result")
|
| 753 |
+
return {
|
| 754 |
+
"task": task_name,
|
| 755 |
+
"status": "empty",
|
| 756 |
+
"content": "",
|
| 757 |
+
"content_length": 0
|
| 758 |
+
}
|
| 759 |
+
|
| 760 |
+
except Exception as e:
|
| 761 |
+
logger.error(f"Error executing task {task_name}: {e}", exc_info=True)
|
| 762 |
+
return {
|
| 763 |
+
"task": task_name,
|
| 764 |
+
"status": "error",
|
| 765 |
+
"error": str(e),
|
| 766 |
+
"content": ""
|
| 767 |
+
}
|
| 768 |
|
| 769 |
def _format_final_output(self, response: dict, interaction_id: str, additional_metadata: dict = None) -> dict:
|
| 770 |
"""
|