# intent_recognition.py from llm_router import LLMRouter class ChainOfThoughtIntentRecognizer: def __init__(self, llm_router: LLMRouter): self.llm_router = llm_router self.cot_templates = self._load_cot_templates() async def recognize_intent(self, user_input: str, context: dict) -> dict: """ Multi-step reasoning for intent recognition """ # Step 1: Initial classification initial_analysis = await self._step1_initial_classification(user_input) # Step 2: Contextual refinement refined_analysis = await self._step2_contextual_refinement( user_input, initial_analysis, context ) # Step 3: Confidence calibration final_intent = await self._step3_confidence_calibration(refined_analysis) return self._format_intent_output(final_intent) async def _step1_initial_classification(self, user_input: str) -> dict: cot_prompt = f""" Let's think step by step about the user's intent: User input: "{user_input}" Step 1: Identify key entities and actions mentioned Step 2: Map to common intent categories Step 3: Estimate confidence for each category Categories: [information_request, task_execution, creative_generation, analysis_research, casual_conversation, troubleshooting] """ return await self.llm_router.route_inference( "intent_classification", cot_prompt ) async def _step2_contextual_refinement(self, user_input: str, initial_analysis: dict, context: dict) -> dict: """ Refine intent classification based on conversation context """ # TODO: Implement contextual refinement using conversation history return initial_analysis async def _step3_confidence_calibration(self, analysis: dict) -> dict: """ Calibrate confidence scores for final intent decision """ # TODO: Implement confidence calibration logic return analysis def _format_intent_output(self, intent_data: dict) -> dict: """ Format intent recognition output with confidence scores """ # TODO: Implement output formatting return { "intent": intent_data.get("intent", "unknown"), "confidence": intent_data.get("confidence", 0.0), "reasoning_steps": intent_data.get("reasoning_steps", []) } def _load_cot_templates(self) -> dict: """ Load Chain of Thought templates for different intent types """ return { "information_request": """Let's analyze: {user_input} Step 1: What information is the user seeking? Step 2: Is it factual, procedural, or explanatory? Step 3: What level of detail is appropriate?""", "task_execution": """Let's analyze: {user_input} Step 1: What action does the user want to perform? Step 2: What are the required parameters? Step 3: Are there any constraints or preferences?""", "creative_generation": """Let's analyze: {user_input} Step 1: What type of creative content is needed? Step 2: What style, tone, and format? Step 3: What constraints or guidelines apply?""" }