File size: 6,380 Bytes
32d870a
686c1e1
 
 
 
3cee5b7
 
92f4bb2
32d870a
92f4bb2
686c1e1
92f4bb2
 
 
686c1e1
3cee5b7
 
da5122f
 
3cee5b7
 
da5122f
3cee5b7
da5122f
 
3cee5b7
 
 
 
 
da5122f
 
 
 
3cee5b7
 
 
 
 
 
 
686c1e1
3cee5b7
 
 
92f4bb2
 
 
 
 
 
 
 
 
 
 
 
 
3cee5b7
 
 
 
 
 
 
 
 
 
 
 
 
686c1e1
 
3cee5b7
 
 
 
 
686c1e1
 
3cee5b7
 
 
 
 
 
 
 
 
 
 
 
da5122f
3cee5b7
686c1e1
 
 
 
 
 
 
 
 
 
3cee5b7
 
686c1e1
 
 
da5122f
 
 
 
 
32511bd
 
da5122f
32511bd
3cee5b7
32511bd
686c1e1
32511bd
 
 
686c1e1
32511bd
 
 
 
686c1e1
 
da5122f
 
32511bd
 
 
686c1e1
da5122f
 
 
 
 
 
3cee5b7
 
686c1e1
3cee5b7
da5122f
 
686c1e1
 
 
3cee5b7
 
 
 
 
 
 
 
 
 
b62199f
 
 
cc69238
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import streamlit as st
import pandas as pd
import torch
import matplotlib.pyplot as plt
import numpy as np
from gridstatus import Ercot
from datetime import datetime, timedelta
from models import ModelConfig, load_model_pipeline

# Load the forecasting model pipeline
@st.cache_resource
def load_pipeline(model_name):
    """Load and cache the model pipeline"""
    return load_model_pipeline(model_name, device_map="cpu", dtype=torch.float32)

# Function to fetch ERCOT electricity price data
@st.cache_data(ttl=3600)  # Cache for 1 hour
def fetch_ercot_data(days_back=180):
    """Fetch ERCOT day-ahead market prices for the current year"""
    try:
        ercot = Ercot()
        current_year = datetime.now().year
        
        # Get day-ahead market settlement point prices for the year
        df = ercot.get_dam_spp(year=current_year)
        
        # Get average price per day across all locations
        df['Date'] = pd.to_datetime(df['Interval Start']).dt.date
        daily_prices = df.groupby('Date')['SPP'].mean()
        
        # Get the last N days
        if len(daily_prices) > days_back:
            daily_prices = daily_prices.tail(days_back)
        
        # Convert to comma-separated string
        price_list = daily_prices.round(2).tolist()
        return ", ".join(map(str, price_list))
    except Exception as e:
        st.warning(f"Could not fetch live ERCOT data: {e}. Using sample data instead.")
        return None

# Streamlit app interface
st.title("Electricity Market Price Forecasting with Chronos-2")
st.write("This demo uses **Chronos-2** to forecast electricity prices from ERCOT (Texas) market data.")

# Model selection
available_model_names = ModelConfig.get_model_names()

selected_model_name = st.selectbox(
    "Select Forecasting Model:",
    options=available_model_names,
    index=0  # Default to first model (Chronos-2)
)

# Load the selected model
with st.spinner(f"Loading {selected_model_name}..."):
    pipeline = load_pipeline(selected_model_name)

# Fetch default ERCOT data
with st.spinner("Fetching latest ERCOT electricity prices..."):
    ercot_data = fetch_ercot_data()

# Fallback to sample data if fetching fails
default_data = ercot_data if ercot_data else """
25.50, 24.80, 26.30, 23.90, 25.10, 27.20, 28.50, 26.70, 24.30, 23.80, 25.40, 26.10, 27.80, 29.20, 28.40,
26.90, 25.30, 24.70, 26.50, 28.10, 29.60, 31.20, 30.50, 28.80, 27.10, 25.90, 27.30, 28.70, 30.20, 32.10,
31.40, 29.70, 28.20, 26.80, 28.40, 29.80, 31.50, 33.20, 32.60, 30.90, 29.30, 27.80, 29.40, 30.90, 32.70,
34.50, 33.80, 32.10, 30.50, 28.90, 30.50, 32.10, 33.90, 35.80, 35.10, 33.30, 31.60, 30.10, 31.70, 33.40,
35.20, 37.10, 36.40, 34.60, 32.90, 31.30, 32.90, 34.60, 36.50, 38.40, 37.70, 35.80, 34.10, 32.50, 34.20,
35.90, 37.80, 39.80, 39.10, 37.10, 35.40, 33.70, 35.40, 37.20, 39.20, 41.20, 40.50, 38.50, 36.70, 35.00,
36.70, 38.50, 40.60, 42.60, 41.90, 39.90, 38.00, 36.30, 38.00, 39.90, 42.00, 44.10, 43.40, 41.30, 39.40
"""

# Data source selection
data_source = st.radio(
    "Select Data Source:",
    ["Live ERCOT Data (Last 180 Days)", "Custom Data"],
    index=0
)

# Input field for user-provided data
if data_source == "Custom Data":
    user_input = st.text_area(
        "Enter time series data (comma-separated values):", 
        ""
    )
else:
    user_input = st.text_area(
        "ERCOT Day-Ahead Hourly Market Prices ($/MWh) - Daily Average:", 
        default_data.strip(),
        height=150
    )
    st.info("💡 Live data from ERCOT's Day-Ahead Market (DAM SPP) - averaged across all settlement points per day")

# Convert user input into a list of numbers
def process_input(input_str):
    return [float(x.strip()) for x in input_str.split(",")]

try:
    time_series_data = process_input(user_input)
except ValueError:
    st.error("Please make sure all values are numbers, separated by commas.")
    time_series_data = []  # Set empty data on error to prevent further processing

# Select the number of days for forecasting
prediction_length = st.slider("Select Forecast Horizon (Days)", min_value=1, max_value=64, value=14)

# If data is valid, perform the forecast
if time_series_data:
    # Create timestamps starting from today going backwards
    end_date = datetime.now()
    start_date = end_date - timedelta(days=len(time_series_data) - 1)
    historical_dates = pd.date_range(start=start_date, periods=len(time_series_data), freq='D')
    
    # Create a DataFrame for Chronos-2
    context_df = pd.DataFrame({
        'timestamp': historical_dates,
        'target': time_series_data,
        'id': 'ercot_prices'
    })

    # Make the forecast using Chronos-2 API
    pred_df = pipeline.predict_df(
        context_df,
        prediction_length=prediction_length,
        quantile_levels=[0.1, 0.5, 0.9],
        id_column="id",
        timestamp_column="timestamp",
        target="target",
    )

    # Prepare forecast data for plotting with actual dates
    forecast_dates = pd.date_range(start=end_date + timedelta(days=1), periods=prediction_length, freq='D')
    median = pred_df["predictions"].values
    low = pred_df["0.1"].values
    high = pred_df["0.9"].values

    # Plot the historical and forecasted data with dates
    plt.figure(figsize=(12, 6))
    plt.plot(historical_dates, time_series_data, color="royalblue", label="Historical Prices", linewidth=2)
    plt.plot(forecast_dates, median, color="tomato", label="Median Forecast", linewidth=2)
    plt.fill_between(forecast_dates, low, high, color="tomato", alpha=0.3, label="80% Prediction Interval")
    plt.xlabel("Date")
    plt.ylabel("Price ($/MWh)")
    plt.title("ERCOT Electricity Price Forecast")
    plt.legend()
    plt.grid(alpha=0.3)
    plt.xticks(rotation=45)
    plt.tight_layout()

    # Show the plot in the Streamlit app
    st.pyplot(plt)
    
    # Display forecast statistics
    st.write("### Forecast Summary")
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("Median Forecast", f"${median.mean():.2f}/MWh")
    with col2:
        st.metric("Low (10th percentile)", f"${low.mean():.2f}/MWh")
    with col3:
        st.metric("High (90th percentile)", f"${high.mean():.2f}/MWh")

# Note for comments, feedback, or questions
st.write("### Notes")
st.write("For comments, feedback, or any questions, please reach out to me on [LinkedIn](https://www.linkedin.com/in/javadbayazi/).")